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General Instructions :

(@)
(ii)

(ii1)

(iv)

(v)

All questions are compulsory.

The question paper consists of 29 questions divided into three
sections A, B and C. Section A comprises of 10 questions of one
mark each, Section B comprises of 12 questions of four marks
each and Section C comprises of 7 questions of six marks eackh.

All questions in Section A are to be answered in one word, one
sentence or as per the exact requirement of the question.

There is no overall choice. However, internal choice has been
provided in 4 questions of four marks each and 2 questions of six
marks each. You have to attempt only one of the alternatives in all
such questions.

Use of calculators is not permitted.
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(1)
(1)

(3ii)

(iv)

(v)
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SECTIONA
g ug A

Question numbers 1 to 10 carry 1 mark each.

Y97 G&Ir 1 @ 10 7% 9% T 1 3F F§ |

What are the direction cosines of a line, which makes equal 'angles
with the co-ordinate axes ?

w%m%ﬁg%w%ﬁﬁﬁwmﬁ%mwwﬁmm%7

- = - =
If a.:a =0 and a . b =0, then what can be concluded about the
....) . :
vector b ?
- —> .
aﬁa.? 0 a.b =0% @ o’y b F Fwa ¥ = frpd Fremen
= ; /

Write the position vector of the mid-point of the vector joining the
points P(2, 3, 4) and Q(4, 1, —2).

fogell P2, 3,4) T Q@, 1,-2) ﬁﬁaﬁa@m%nmﬁgaﬂﬁaﬁ
wfew faf@y |

' Evaluate :

, write the positive value of x.

=|i ;l 2 @ x F YT AW fafEe |
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6. Write the order of the product matﬁx :

1
21102 3 4]
3 \'
TR AR | 2 | [2 3 4] W ffew |
i |

9. Write the values of x — y + z from the followmg equation :

X+y+z— [ 9]

X+ z =15

L y+tz | 7]
frfafad TfieoT @ x -y + 2 é;mfi‘vi’f‘@q

X+y+z [ 9]

X+ z =|5

y+z | | 7]

8.  Write the principal value of tan (- 1).
tan"i(— 1) = == A fafEy |
9.  Write fog,if f: R —> Rand g: R — R are given by :
fx) = |x| and gx) =|5x-2].

fog fafay, Wﬁf:R»RWg:R—)Rﬁﬁmm%’:
fx)=|x| qO gx)=]|5x-2].

10. Evaluate :

er — e——2x- i
L2 -2x

e“* +e
e I SN

ezx - e—-2x
2% —2x dx
e
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SECTION B
‘ @UE q

Question numbers 11 to 22 carry 4 marks each.
TIT T 11 § 22 7% T9% T % 4 3% § |

11. Find the mean number of heads in three ’tossés of a fair coin.
@W(fair)mﬁ‘ﬁmw@mmﬁﬁaﬁwmmm'ml

B RS LR, SR L
12. If vectors 2 =21 +2j +3k, b =-1+2j +k and ¢ =3i +j

— o . =
are such that a + A b is perpendicular to ¢ , then find the value of A.
A A ' A : A N : A
A dR @ =21 +2) +3k, b e—i+2] +k mm ¢ =31+ W

%‘Fmr?wfi?, ?mmé,ﬁ}»wmméﬁml

'13. Find the particular solution of the differential equation :

AL+e®dy+(1+y)e*dg=0, given that y=1 when x = 0.

STahe THHTT (1 + ™) dy + (1 +y) e* dx = 0 & fafow ga@ ¥ I,
e x=0%, @ y=1 2| |

14. Evaluate’ :
J. e2% gin x dx

OR

Evaluate : ,
J' 3X +5 dx
Jx2 —8x+7

65/2/2 | 5 | P.T.O.




WWW
Jezxsinxdx

HAYn

A 19 SHINT
J‘ 3x+5 dx '
\/xz —8x+7
15. Prove that :

~ 2
d [—-}E \/az —x2 4 32- sin~1 (Eﬂ = \/az —x2

—d_); 2 a
OR
, 9 |
If yilog[x + \/x2+1:’, prove that (x2+1)£1~—}27 +x-§}~y = 0.
, dx ’ X
Ed)z [—;—i— JaZ—x% 4 22— sin~! (E)J = Ja%_x2
HYAT
2
Il y=log[x+\lxz+1}é, Fﬁ%%qﬁ(x2+l)g—%+x%=0.
b:¢

16. - Find the intervals in which the function f given by
fx) =sinx +cosx, 0<x<2n
is strictly increasing or strictly decreasing.
: OR ' ,

Find the points on the curve y = x° at which the slope of the tangent
is equal to the y-coordinate of the point. V

flx) = sin x + cos x, 0 <x<2n T RIMT T £3 3 SRS I 1y

S wer f R S st R e
;?ﬁy:éx3 T Ty 0 AR o W we Yo o frg %yt
& 8 |
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17. Prove the following :
O 9 . _1(1) 9
Z— — —gin" | =|= = sin
8 4 3 4

OR

Solve the follovvirig equation for x :

tanfl(izx) = —;;tan"l(x), x>0
< ;

m@awmwﬁx%mmmq:

tan“l(l_x) = —;-tan"l(x), x>0

1+x

18. Consider f : ~RJ; —> [4, ] given by f(x) = x> + 4. Show that f is
invertible with the inverse (f 1) of f given by f"l(y) = |y —4, where R,
is the set of all non-negative real numbers.

fx) = x% + 4 B0 YT BoH £: R, o [4, ] ® RER BT | frg AR 5 £
FoRTUiE @ 9 £ & yfem ¢, £) = Jy -4 50 = & 8, R,
T TR AT St ® W R

19. Prove, using properties of determinants :

a—-b-c 2a 2a ‘
2b b-c—-a 2b =(a+b+c)3
2¢ 2c c—a->b

65/2/2 7 ' P.T.O.




YR & ol &7 wEnT @ fag SR R

a-b=-c 2a 2a ;
2b b-c-a 2b =(a+Db+e?
2¢ 2¢ c=a=b :

20, Find the value of k so that the function f, defined by
kx+1, if x<n
f(x) =

cosx, if x>n

is continuous at x = T.

k ®1 A W@ HSC M6 Go £, ST 5w oReie €, x = W o R

kx+1, 3 x<m
f(x) = ’
cosx, e x>m

21. Solve the following differential equation :

% + 2y tan x = sin x, given that y =0, when x= g

=7 3faehel WHIsRT & g HINC @

§X+2ytanx=sinx,ﬁm§1&m"\‘ﬂ X = %,Fﬁy:O%J

r
dx 3

22. Find the shortest distance between the lines :

—3 A A A A A A
r =(1 +2j +3k)+A( -3j +2k) and

Y A A A A A A
r =(4i +5j +6k)+u(2i +3j + k).

Wt Y= +2) 3k +nd —8] +2k) mm

_9
r
- A A A A ATA
r =(41 +5j +6k) +p2i +3j + k)

& 9 =Fae g g HI |
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SECTION C
Eig 9

Question numbers 23 to 29 carry 6 marks each.
g G 23 29 7% YOF T F 6 HF & |

23. A cottage industry manufactures pedestal lamps and wooden shades,
each requiring the use of grinding/cutting machine and a sprayer. It
takes 2 hours on the grinding/cutting machine and 3 hours on the
sprayer to manufacture a pedestal lamp. It takes one hour on the
grinding/cutting machine and 2 hours on the sprayer to manufacture a
shade. On any day, the sprayer is available for at the most 20 hours
and the grinding/cutting machine for at the most 12 hours. The profit
from the sale of a lamp is T 5 and that from a shade is ¥ 3. Assuming
that the manufacturer can sell all the lamps and shades that he
produces, how should he schedule his daily production in order to
maximise his profit ? Make an L.P.P. and solve it graphically.

@Wmﬁﬁmﬁwﬁwaﬁtaﬁ%ﬁgmélm%ﬁnmﬁ
TE/FEY W ueie st SRR F eTevesd Tt € | U @ & fEin A 2 6
TEy/FEY S weie @ o 3 W BRR # avadal oni € VEfE TE US %k
frfor ¥ 1 Yo7 TIEY/ERY S Wi F sk 2 92 SRR S sravdsn e 2 |
B ST sfuead 20 U a4 TE/ERY F Wi it sfuedm 12 €2 %
T ST % | TE W9 F e WA T 5T T WS W faht WA X 3
2| 7% T 3T f5 W fiff ov oo Y g W E, O AT % 9w sed
5 g $9 A T f5 oy oftsan 8 | SWie W s T §He
TR W6 & FeEdl ¥ & HISTC |

4 N
24, Evaluate J' (X2 —~x) dx as a limit of sums.

1
OR

Evaluate :

Z
sinx + cosx
9 + 16sin 2x
0
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g 4
Wﬁm%wﬁj(xz—x)dxmmmaﬁml
1 1

HYAT

A | RN

a

SinxX + cosx
9 + 165sin 2x

‘o'~——-,»4>|

25. Using the method of integration, find the area of the region bounded
by the lines : k '
2x+y=4
3x-2y =6
x-3y+5=0.
e fafy &1 3T w5 Y
2x+y=4
3x—-2y =6
X-3y+5=0

§ R & = dTee T R

26. A window is in the form of a rectangle surmounted by a semi-circular
opening. The total perimeter of the window is 10 metres. Find the
dimensions of the rectangle so as to admit maximum light through the
whole opening.

Rl ST & S o Seiqw F AR R fawer § | fasw W gyl wRem 10 @
¢ | Pl get fagd A sl s oY ¥ R o % R W SR |
1 -1 2][-2 0 1 ,
27. Use product |0 2 -3 9 2 -3| to solve the system of
' 3 =2 4 6 1 -2
equations :
X—y+2z=1
2y -3z=1
3x — 2y + 4z = 2.
OR

- 65/2/2 10




- Using elementary tfansformations, find the inverse of the matrix :

2 0 -1
5 1 0

0 1 3

1 2][-2 0 1
0 2 -—3|| 9 2 -3|% T B T FH THHOT A
13 -2 4|| 6 1 -2

x—-y+2z=1
2y —3z=1
3x -2y +4z=2
F T RN | |
‘ . IrgEt
TR SURROT AT % o STeE S R § I
2 0 -1
5 1 0
0 1 3

28. Find the vector equation of the plane, passing through the points
A2, 2, -1, B (3, 4, 2) and C (7, 0, 6) Also, find the cartesian

equation of the plane. : : 6

wwaﬂmmﬂmﬁﬁqsﬁﬁ@ﬁ A@, 2, 1), B, 4, 9) T
C(7,0,6)§'@aﬂm%lwwmmﬁamsﬁm?ﬁml

- 29. Bagl contains 3 red and 4 black balls and Bag II contains 4 red and
5 black balls. One ball is transferred from Bag I to Bag II and then a
ball is drawn from Bag II at random. The ball so drawn is found to be ,
red in colour. Find the probability that the transferred ball is black. 6
dem I3 3 el g 4 el W § wem don I1H 4 o q 5w W | T T
2 der 19 Yo 11§ wmiRa fer ST 8 ol a9 U g Ageear den I H 9
ﬁ‘ﬂ?ﬁﬁfﬂ%?ﬁmwﬁqﬁwmélwmmnmﬁ?:%‘m"\?fwaaﬁﬁﬁ
T A i |
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