Series RRSS2/2

SET-1

प्रश्न-पत्र कोड Q.P. Code

56/2/1

रोल नं. Roll No.

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित (I) पृष्ठ 27 हैं।
- (II) कृपया जाँच कर लें कि इस प्रश्न-पत्र में (II) Please check that this question paper 33 प्रश्न हैं। *
- 🗱 (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए (III) Q.P. Code given on the right hand प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के * मुख-पृष्ठ पर लिखें। *
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से (IV) Please write down the serial * पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें ।
 - इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का (V) समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

NOTE

Please check that this question paper contains 27 printed pages.

contains 33 questions.

side of the question paper should be written on the title page of the answer-book by the candidate.

number of the question in the answer-book before attempting it.

15 minute time has been allotted to read this question paper. question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

1

निर्धारित समय : 3 घण्टे

अधिकतम अक: 70

Time allowed : 3 hours

Maximum Marks: 70

56/2/1-12

P.T.O.

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ** एवं **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 1 अंक का
- (iv) खण्ड ख प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 2 अंकों का है ।
- (v) **खण्ड ग** प्रश्न संख्या **22** से **28** तक लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न **3** अंकों का है ।
- (vi) खण्ड घ प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 5 अंकों का है ।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग वर्जित है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

16×1=16

- ${f 1.}$ जब ${
 m MnO_2}$ को वायु की उपस्थिति में ${
 m KOH}$ के साथ संगलित किया जाता है, तो यह देता है :
 - (A) $KMnO_4$

(B) K_2MnO_4

(C) Mn_2O_7

- (D) Mn_2O_3
- $\mathbf{2}$. लिगन्ड EDTA^{4-} उदाहरण है :
 - (A) एकदंतुर लिगन्ड का
 - (B) द्विदंतुर लिगन्ड का
 - (C) त्रिदंतुर लिगन्ड का
 - (D) बहुदंतुर लिगन्ड का

2

56/2/1-12

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into five sections Section A, B, C, D and E.
- (iii) Section A questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) Section B questions number 17 to 21 are very short answer type questions. Each question carries 2 marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) Section D questions number 29 and 30 are case-based questions. Each question carries 4 marks.
- (vii) Section E questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculators is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark $16 \times 1=16$

1.	When ${ m MnO}_2$ is fused with KOH in air, it gives :					
	(A)	KMnO ₄			(B)	K_2MnO_4
	(C)	$\mathrm{Mn_{2}O_{7}}$			(D)	$\mathrm{Mn_2O_3}$

- 2. Ligand EDTA $^{4-}$ is an example of a:
 - (A) Monodentate ligand
 - (B) Didentate ligand
 - (C) Tridentate ligand
 - (D) Polydentate ligand

- निम्नलिखित लिगन्ड में से कौन-सा कीलेट संकुल निर्मित करता है ? 3.
 - $C_2O_4^{2-}$ (A)
 - Cl^- (B)
 - NO_2 (C)
 - NH_3 (D)
- निम्नलिखित में से किसमें sp^2 संकरित कार्बन X से आबंधित है ?
 - $\mathrm{CH}_2 = \mathrm{CH} \mathrm{CH}_2 \mathrm{X}$

 - (C) $CH_2 = CH X$
 - (D) $CH_3 CH_2 X$
- निम्नलिखित में से कौन-सा सर्वाधिक अम्लीय है ? 5.

(B) OH
(D)

- ऐनिसोल, HI के साथ अभिक्रिया करके देता है: 6.
 - (A) CH₃ I
 - (B) \longleftrightarrow $I + CH_3 OH$
 - (C) $CH_2 OH + CH_3 I$
 - (D) $CH_2 I + CH_3 OH$

- 3. Which of the following ligand forms chelate complex?
 - (A) $C_2O_4^{2-}$
 - (B) Cl⁻
 - (C) NO_2^-
 - (D) NH₃
- 4. Which of the following contains sp² hybridised carbon bonded to X?
 - (A) $CH_2 = CH CH_2 X$
 - (B) $CH_2 X$
 - (C) $CH_2 = CH X$
 - (D) $CH_3 CH_2 X$
- **5.** Which of the following is most acidic?
 - (A) $CH_2 OH$

(B) OH

(C) OH

- (D) Cl OH
- **6.** Anisole reacts with HI to give :
 - (A) $OH + CH_3 I$
 - (B) $+ CH_3 OH$
 - (C) $CH_2 OH + CH_3 I$
 - (D) $CH_2 I + CH_3 OH$

- - ${\rm (A)} \quad {\rm C_2H_5OSO_3H}$
 - (B) $C_2H_5 O CH_3$
 - (C) $C_2H_5 O C_2H_5$
 - (D) $CH_2 = CH_2$
- दो द्रवों के स्थिरक्वाथी विलयन का क्वथनांक उन दोनों द्रवों के क्वथनांक से निम्नतर होता है जब यह :
 - (A) संतृप्त है
 - (B) राउल्ट नियम से धनात्मक विचलन दर्शाता है
 - (C) राउल्ट नियम से ऋणात्मक विचलन दर्शाता है
 - (D) राउल्ट नियम से कोई विचलन नहीं दर्शाता है
- 9. किसी अवाष्पशील विलेय के जलीय विलयन के वाष्प दाब का आपेक्षिक अवनमन 0·0225 है। अवाष्पशील विलेय का मोल-अंश है:
 - (A) 0.80
 - (B) 0·725
 - (C) 0.15
 - (D) 0·0225
- 10. NaCl के जलीय विलयन के विद्युत-अपघटन के दौरान :
 - (A) कैथोड पर $H_2(g)$ मुक्त होती है
 - (B) कैथोड पर Na निर्मित होता है
 - (C) ऐनोड पर $O_2(g)$ मुक्त होती है
 - (D) कैथोड पर $\operatorname{Cl}_2(g)$ मुक्त होती है

6

- 7. Ethanol on heating with conc. H_2SO_4 at 413 K gives:
 - (A) $C_2H_5OSO_3H$
 - $(B) \quad \mathrm{C_2H_5} \mathrm{O} \mathrm{CH_3}$
 - (C) $C_2H_5 O C_2H_5$
 - (D) $CH_2 = CH_2$
- 8. An azeotropic solution of two liquids has boiling point lower than either of them when it:
 - (A) is saturated
 - (B) shows positive deviation from Raoult's law
 - (C) shows negative deviation from Raoult's law
 - (D) shows no deviation from Raoult's law
- **9.** The relative lowering of vapour pressure of an aqueous solution containing non-volatile solute is 0.0225. The mole fraction of the non-volatile solute is:
 - (A) 0.80
 - (B) 0·725
 - (C) 0·15
 - (D) 0.0225
- 10. During electrolysis of aqueous solution of NaCl:
 - (A) $H_2(g)$ is liberated at cathode
 - (B) Na is formed at cathode
 - (C) O₂(g) is liberated at anode
 - (D) $Cl_2(g)$ is liberated at cathode

- 11. रासायनिक अभिक्रिया के दौरान उत्प्रेरक जोड़ने से अभिक्रिया की निम्नलिखित मात्राओं में से किसको परिवर्तित कर देता है ?
 - (A) एन्थैल्पी
 - (B) सक्रियण ऊर्जा
 - (C) एन्ट्रॉपी
 - (D) आंतरिक ऊर्जा
- 12. किसी प्राथमिक अभिक्रिया $P \to Q$ के लिए 'P' के लोप होने की दर, 'P' की सांद्रता दुगुनी करने पर, 8 के गुणक से बढ़ जाती है। 'P' के प्रति अभिक्रिया की कोटि है:
 - (A) 3
 - (B) 4
 - (C) 2
 - (D) 1

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।

- 11. The addition of catalyst during a chemical reaction alters which of the following quantities of the reaction?
 - (A) Enthalpy
 - (B) Activation energy
 - (C) Entropy
 - (D) Internal energy
- 12. For the elementary reaction $P \rightarrow Q$, the rate of disappearance of 'P' increases by a factor of 8 upon doubling the concentration of 'P'. The order of the reaction with respect to 'P' is:
 - (A) 3
 - (B) 4
 - (C) 2
 - (D) 1

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.

- 13. अभिकथन (A): ऐलिफैटिक प्राथमिक ऐमीनों का विरचन गैब्रिएल थैलिमाइड संश्लेषण द्वारा किया जा सकता है।
 - कारण (R): ऐल्किल हैलाइड थैलिमाइड से प्राप्त ऋणायन के साथ नाभिकरागी प्रतिस्थापन करता है।
- 14. अभिकथन (A): DNA में यूरेसिल क्षारक उपस्थित होता है।

 कारण (R): DNA स्वप्रतिकरण करता है।
- 15. अभिकथन (A): ऐलिफैटिक ऐमीनों के डाइऐज़ोनियम लवणों की तुलना में ऐरोमैटिक ऐमीनों के डाइएज़ोनियम लवण अधिक स्थायी होते हैं।
 - कारण (R): ऐलिफैटिक ऐमीनों के डाइऐज़ोनियम लवण अनुनाद दर्शाते हैं।

खण्ड ख

- 17. ग्लूकोस (मोलर द्रव्यमान = 180 g mol ⁻¹) का 6% विलयन किसी अज्ञात कार्बनिक पदार्थ के 2.5% विलयन के साथ समपरासारी है । अज्ञात कार्बनिक पदार्थ का अणु भार परिकलित कीजिए ।
- 18. किसी प्रथम कोटि की अभिक्रिया का वेग स्थिरांक $1\cdot25\times10^{-3}~{
 m s}^{-1}$ है । इस अभिकर्मक के $5~{
 m g}$ को $2\cdot5~{
 m g}$ में घटने में कितना समय लगेगा ?

[$\log 2 = 0.301$, $\log 3 = 0.4771$, $\log 4 = 0.6021$]

- **13.** Assertion (A): Aliphatic primary amines can be prepared by Gabriel phthalimide synthesis.
 - Reason(R): Alkyl halides undergo nucleophilic substitution with anion formed by phthalimide.
- 14. Assertion (A): Uracil base is present in DNA.

Reason (R): DNA undergoes self-replication.

15. Assertion (A): Diazonium salts of aromatic amines are more stable than those of aliphatic amines.

Reason (R): Diazonium salts of aliphatic amines show resonance.

16. Assertion (A): p-nitroaniline is a weaker base than p-toluidine.

Reason (R): The electron withdrawing effect of $-NO_2$ group in p-nitroaniline makes it a weaker base.

SECTION B

- 17. A 6% solution of glucose (molar mass = 180 g mol⁻¹) is isotonic with 2.5% solution of an unknown organic substance. Calculate the molecular weight of the unknown organic substance.
- 18. A first order reaction has a rate constant 1.25×10^{-3} s⁻¹. How long will 5 g of this reactant take to reduce to 2.5 g?

 [log 2 = 0.301, log 3 = 0.4771, log 4 = 0.6021]

1105 2 - 0 001, 108 0 - 0 4771, 108 4 - 0 0021

19. (क) लैन्थेनॉयड आकुंचन क्या है ? लैन्थेनॉयड आकुंचन की तुलना में एक तत्त्व से दूसरे तत्त्व के बीच ऐक्टिनॉयड आकुंचन अधिक होता है । क्यों ? 1+1=2

अथवा

- (ख) संक्रमण धातुएँ कणन एन्थैल्पी के उच्च मान क्यों दर्शाती हैं ? 3d-श्रेणी में किस तत्त्व की कणन एन्थैल्पी सबसे कम है ?
- **20.** (a) यौगिकों के निम्नलिखित युगल में से कौन-सा यौगिक अधिक तीव्रता से $S_N 2$ अभिक्रिया करेगा और क्यों ?

$$igwedge$$
 I अथवा $igwedge$ Br

(ख) निम्नलिखित में मुख्य उत्पाद लिखिए:

 $ext{CH}_2 ext{CH}_3$ $ext{Cl}_2$, परार्बेगनी प्रकाश

21. निम्नलिखित पदों को परिभाषित कीजिए :

2×1=.

1+1=2

- (क) प्रोटीन का विकृतीकरण
- (ख) अपवृत शर्करा

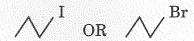
खण्ड ग

22. निम्नलिखित अभिक्रियाओं में A, B और C की संरचनाएँ लिखिए :

$$2\times1\frac{1}{2}=$$

(क)
$$CH_3 - CH_2 - Br \xrightarrow{KCN} A \xrightarrow{OH} B \xrightarrow{NaOH + Br_2} C$$

(ख)
$$\stackrel{\text{NO}_2}{ }$$
 $\stackrel{\text{Fe + HCl}}{ }$ $\stackrel{\text{Fe + HCl}}{ }$ $\stackrel{\text{NaNO}_2 + \text{HCl}}{ }$ $\stackrel{\text{C}_2\text{H}_5\text{OH}}{ }$ $\stackrel{\text{C}}{ }$


56/2/1-12

19. (a) What is lanthanoid contraction? Actinoid contraction is greater from element to element than lanthanoid contraction. Why? 1+1=2

OR

- (b) Why do transition metals have high enthalpy of atomization? Which element of 3d-series has lowest enthalpy of atomization? 1+1=2
- 20. (a) In the following pair of compounds, which compound undergoes $S_N 2$ reaction faster and why?

(b) Write the major product in the following:

1+1=2

21. Define the following terms:

 $2 \times 1 = 2$

- (a) Denaturation of protein
- (b) Invert sugar

SECTION C

22. Write the structures of A, B and C in the following reactions: $2 \times 1\frac{1}{2} = 3$

(a)
$$CH_3 - CH_2 - Br \xrightarrow{KCN} A \xrightarrow{OH^-} B \xrightarrow{NaOH + Br_2} C$$

(b)
$$\xrightarrow{\text{Fe + HCl}} \text{A} \xrightarrow{\text{NaNO}_2 + \text{HCl}} \text{B} \xrightarrow{\text{C}_2\text{H}_5\text{OH}} \text{C}$$

23. निम्नलिखित से संबद्ध अभिक्रिया लिखिए:

 $3\times1=3$

- (क) वोल्फ-किश्नर अपचयन
- (ख) विकार्बोक्सिलन अभिक्रिया
- (ग) कैनिज़ारो अभिक्रिया
- 24. निम्नलिखित के विरचन के लिए अभिक्रियाओं के समीकरण दीजिए : (कोई तीन)

3×1=3

- (क) क्लोरोबेन्ज़ीन से फ़ीनॉल
- (ख) फ़ीनॉल से सैलिसैल्डिहाइड
- (ग) ऐनिसोल से 2-मेथॉक्सीऐसीटोफ़ीनोन
- (घ) फ़ीनॉल से पिक्रिक अम्ल
- 25. निम्नलिखित के लिए कारण दीजिए:

3×1=3

- (क) क्लोरीन यद्यपि इलेक्ट्रॉन अपनयक समूह है फिर भी यह ऐरोमैटिक इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं में ऑर्थो/पैरा निर्देशक है।
- (ख) रेसिमिक मिश्रण ध्रुवण अघूर्णक होता है।
- (ग) n-प्रोपिल क्लोराइड की अपेक्षा ऐलिल क्लोराइड अधिक शीघ्रता से जल-अपघटित हो जाता है ।
- 26. 283 K पर किसी विलायक का वाष्प दाब 100 mm Hg है । उस तनु विलयन का वाष्प दाब परिकलित कीजिए जिसमें 283 K पर किसी प्रबल विद्युत-अपघट्य AB का 1 मोल विलायक के 50 मोल में घुला है (यह मान लीजिए कि विलेय AB पूर्णतः वियोजित हो जाता

है)।

23.	Write the reaction involved in the following: $3 \times 1=3$						
	(a)	Wolff-Kishner reduction					
	(b)	Decarboxylation reaction					
	(c)	Cannizzaro reaction					
		en de la companya de La companya de la co					
24.	Give the equations of reactions for the preparation of: (any <i>three</i>) $3 \times 1=3$						
	(a)	Phenol from chlorobenzene					
	(b)	Salicylaldehyde from phenol					
	(c)	2-Methoxyacetophenone from anisole					
	(d)	Picric acid from phenol					
		다. 그는 사람들은 마시아 아니는 아니는 사람들이 되었다. 그는 사람들이 가장 함께 되었다. 그는 사람들이 되었다. 그는 사람들이 되었다. 그는 사람들이 되었다. 그는 사람들이 다른 사람들이 다른 그는 사람들이 아니는 사람들이 가장 하는 사람들이 되었다. 그는 사람들이 되었다. 그는 사람들이 아니는 사람들이 되었다. 그는 사람들이 되었다면 되었다. 그는 사람들이 되었다면 되었다. 그는 사람들이 되었다면 되었다. 그는 사람들이 되었다면 되었다면 되었다면 되었다. 그는 사람들이 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면					
25.	Give reasons for the following: $3 \times 1=3$						
	(a)	Chlorine is ortho/para directing in electrophilic aromatic substitution reactions, though chlorine is an electron withdrawing group.					
	(b)	Racemic mixture is optically inactive.					
	(c)	Allyl chloride is hydrolysed more readily than n-propyl chloride.					
26.	The vapour pressure of a solvent at 283 K is 100 mm Hg. Calculate the						
	vapour pressure of a dilute solution containing 1 mole of a strong						
	elect	crolyte AB in 50 moles of the solvent at 283 K (assuming complete					

dissociation of solute AB).

27. निम्नलिखित सेल का वि.वा. बल (emf) परिकलित कीजिए:

Zn (s) | Zn²⁺ (0·1 M) || Sn²⁺ (0·001 M) | Sn (s) $\frac{1}{2} = \frac{1}{2} =$

28. ताप में 17° C से 27° C तक वृद्धि करने पर किसी गैसीय अभिक्रिया का वेग तीन गुना हो जाता है । इस अभिक्रिया के लिए सि्क्रियण ऊर्जा का परिकलन कीजिए । [दिया गया है : $2.303~\mathrm{R} = 19.15~\mathrm{JK}^{-1}~\mathrm{mol}^{-1}$, $\log 3 = 0.48$]

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पिढ़ए और दिए गए प्रश्नों के उत्तर दीजिए।

29. कार्बोहाइड्रेट पौधों और प्राणियों दोनों में जीवन के लिए आवश्यक होते हैं । पौधों में स्टार्च की तरह और प्राणियों में ग्लाइकोजन के रूप में कार्बोहाइड्रेट संग्रहण अणुओं की भाँति प्रयुक्त होते हैं । रासायिनक रूप से ये पाँलिहाइड्राॅक्सी ऐल्डिहाइड अथवा कीटोन होते हैं । कार्बोहाइड्रेटों को जल-अपघटन में उनके व्यवहार के आधार पर मोनोसैकैराइड, ओलिगोसैकैराइड और पाँलिसैकैराइड में वर्गीकृत किया गया है । सभी मोनोसैकैराइड अपचायी शर्करा होती हैं, अर्थात् ये टाॅलेन अभिकर्मक तथा फेलिंग विलयन से ऑक्सीकृत हो जाती हैं । ग्लूकोस जैसा मोनोसैकैराइड ऐल्डोहैक्सोज होता है और इसका आण्विक सूत्र $C_6H_{12}O_6$ पाया गया । विभिन्न अभिकर्मकों जैसे HI, H_2N – OH, ब्रोमीन जल, $(CH_3CO)_2O$ इत्यादि के साथ अभिक्रिया करके इसकी संरचना में एक ऐल्डिहाइड समूह, एक प्राथमिक ऐल्कोहाँलिक समूह ($-CH_2OH$) और चार द्वितीयक ऐल्कोहाँलिक समूह (-CHOH) पाए गए । ऐल्डिहाइड समूह उपस्थित होते हुए भी ग्लूकोस ऐल्डिहाइड समूह की कुछ अभिक्रियाएँ जैसे शिफ परीक्षण, $NaHSO_3$, योगज नहीं देता है । यह ग्लूकोस के दो चक्रीय हैमीऐसीटैल रूपों के अस्तित्व को समझाता है जिनमें भिन्नता केवल C-1 पर उपस्थित हाइड्रॉक्सिल समूह के विन्यास में होती है ।

3

$$Zn (s) | Zn^{2+} (0.1 M) | | Sn^{2+} (0.001 M) | Sn (s)$$

Given :
$$E_{Zn^{2+}/Zn}^{o} = -0.76 \text{ V}, \quad E_{Sn^{2+}/Sn}^{o} = -0.14 \text{ V}$$

$$[\log 10 = 1]$$

28. The rate of a gaseous reaction triples when temperature is increased from 17°C to 27°C. Calculate the energy of activation for this reaction.

[Given: $2.303 \text{ R} = 19.15 \text{ JK}^{-1} \text{ mol}^{-1}$, $\log 3 = 0.48$]

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

Carbohydrates are essential for life in both plants and animals. 29. Carbohydrates are used as storage molecules as starch in plants and glycogen in animals. Chemically they are polyhydroxy aldehydes or ketones. On the basis of their behaviour on hydrolysis, carbohydrates are classified as monosaccharides, oligosaccharides and polysaccharides. All monosaccharides are reducing sugars, i.e., they are oxidized by Tollens' reagent and Fehling's solution. A monosaccharide like glucose is aldohexose and its molecular formula was found to be C₆H₁₂O₆. After reacting with different reagents like HI, H2N-OH, Bromine water, (CH₃CO)₂O, etc. its structure was found to contain one aldehyde group, one primary alcoholic group, (-CH2OH) and four secondary alcoholic groups (> CHOH). Despite having the aldehyde group, glucose does not give some of the reactions of aldehyde group like Schiff's test, NaHSO3 addition. This explains the existence of glucose in two cyclic hemiacetal forms which differ only in the configuration of the hydroxyl group at C-1.

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (क) अपचायी शर्करा क्या होती हैं ?
- (ख) निम्नलिखित को मोनोसैकैराइड और डाइसैकैराइड में वर्गीकृत कीजिए :फ्रक्टोस, सूक्रोस, लैक्टोस, गैलैक्टोस
- (ग) उस पॉलिसैकैराइड का नाम बताइए जिसे 'प्राणी स्टार्च' कहा जाता है । इसे 'प्राणी स्टार्च' क्यों कहते हैं ?

अथवा

- (ग) (i) ग्लूकोस के उन समावयवों के नाम बताइए जिनके चक्रीय रूप में C 1 पर
 OH समूह के विन्यास में ही भिन्नता होती है ।
 - $_{
 m ii)}$ $_{
 m reg}$ कोस की $_{
 m Br}{}_{
 m 2}$ जल के साथ अभिक्रिया किस प्रकार्यात्मक समूह की $_{
 m 2}$
- 30. संक्रमण धातुओं के उदासीन परमाणु अथवा आयन में d-कक्षक अपूर्ण होते हैं । इनके परमाणुओं में आंशिक भिरत d-कक्षकों की उपस्थिति संक्रमण तत्त्वों को असंक्रमण तत्त्वों से अलग कर देती है । आंशिक रूप से भिरत d-कक्षकों के कारण ये तत्त्व कुछ अभिलक्षणिक गुण दर्शाते हैं, जैसे अनेक ऑक्सीकरण अवस्थाएँ, रंगीन आयनों का बनना तथा अनेक प्रकार के लिगन्डों के साथ संकुल निर्माण आदि । संक्रमण धातुएँ तथा इनके यौगिक उत्प्रेरकी गुण व अनुचुम्बकीय व्यवहार भी दर्शाते हैं । संक्रमण धातुएँ अति कठोर तथा अल्प वाष्पशील होती हैं । इनके $E^0_{M^{2+}/M}$ के मानों की जाँच परिवर्ती प्रवृत्ति दर्शाती है :

Answer the following questions:

(a) What are reducing sugars?

1

(b) Classify the following into monosaccharide and disaccharide : Fructose, Sucrose, Lactose, Galactose

1

(c) Name the polysaccharide which is known as 'animal starch'. Why is it called 'animal starch'?

2

OR

- (c) Name the isomers of glucose which in the cyclic form differ only in the configuration of the OH group at C 1.
 - (ii) Presence of which functional group was detected when glucose reacted with Br_2 water? $2 \times 1=2$
- 30. Transition metals have incomplete d-subshell either in neutral atom or in their ions. The presence of partly filled d-orbitals in their atoms makes transition elements different from that of the non-transition elements. With partly filled d-orbitals, these elements exhibit certain characteristic properties such as display of a variety of oxidation states, formation of coloured ions and entering into complex formation with a variety of ligands. The transition metals and their compounds also exhibit catalytic properties and paramagnetic behaviour. The transition metals are very hard and have low volatility. An examination of the $E_{M^{2+}/M}^{0}$ values shows the varying trends:

......

E _{M²⁺/M}				
V	- 1.18			
Cr	- 0.91			
Mn	- 1.18			
Fe	- 0.44			
Co	- 0.28			
Ni	- 0.25			
Cu	+ 0.34			
Zn	- 0.76			

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (क) किस आधार पर हम कह सकते हैं कि Cu एक संक्रमण तत्त्व है लेकिन Zn नहीं ? (परमाणु क्रमांक : $Cu=29,\ Zn=30$)
- (ख) संक्रमण तत्त्व ऑक्सीकरण अवस्थाओं में विविधता क्यों दर्शाते हैं ?
- (η) (i) वैनेडियम से ज़िंक तक $E^o_{M^{2+}/M}$ के मान अनियमित प्रवृत्ति क्यों दर्शाते \mathring{f} ?
 - (ii) संक्रमण धातुओं में ऑक्सीकरण अवस्थाओं की परिवर्तनीयता असंक्रमण तत्त्वों की परिवर्तनीयता से किस प्रकार भिन्न होती है ? $2 \times 1 = 1$

अथवा

- (η) (i) ${\rm Cr}^{2+}$ प्रबल अपचायक है जबिक ${\rm Mn}^{3+}$ प्रबल ऑक्सीकारक, जबिक दोनों ही ${
 m d}^4$ स्पीशीज़ हैं, क्यों ? $({\rm V}({
 m T}) = 24, {\rm Mn} = 25)$
 - (ii) निम्न आयनिक समीकरण पूर्ण कीजिए :

2×1=

$$2MnO_4^- + H_2O + I^- \longrightarrow$$

$\mathrm{E_{M^{2+}/M}^{o}}$				
V	- 1.18			
Cr	- 0.91			
Mn	- 1.18			
Fe	- 0.44			
Со	- 0.28			
Ni	- 0.25			
Cu	+ 0.34			
Zn	- 0.76			

Answer the following questions:

- On what basis can we say that Cu is a transition element but Zn is (a) not ? (Atomic number : Cu = 29, Zn = 30)
- Why do transition elements show variety of oxidation states? 1 (b)
- Why do $E_{M^{2+}/M}^{o}$ values show irregular trend from Vanadium (i) (c) to Zinc?
 - How is the variability in oxidation states of transition metals (ii) different from that of the non-transition elements? $2 \times 1 = 2$

OR

- Of the d⁴ species, Cr²⁺ is strongly reducing while Mn³⁺ is (i) (c) strongly oxidizing. Why ? (Atomic number : Cr = 24, Mn = 25)
 - $2 \times 1 = 2$ Complete the following ionic equation: (ii)

$$2MnO_4^- + H_2O + I^- \longrightarrow$$

31. निम्नलिखित में से किन्हीं पाँच के उत्तर दीजिए:

5×1:

- (क) अष्टफलकीय संकुल की क्रिस्टल क्षेत्र विपाटन ऊर्जा $(\Delta_{\rm o})$ किस प्रकार चतुष्फलकीय संकुल की विपाटन ऊर्जा $(\Delta_{\rm t})$ से संबंधित है ?
- (ख) निम्नलिखित संकुल का IUPAC नाम लिखिए : $[PtCl_2(en)_2] \ (NO_3)_2$
- (ग) संयोजकता आबंध सिद्धांत (VBT) के आधार पर संकुल [Ni(CO)₄] की ज्यामिति
 और चुंबकीय व्यवहार लिखिए ।
- (घ) संकुल $[Co(NH_3)_6]$ $[Cr(CN)_6]$ के द्वारा किस प्रकार की समावयवता दर्शाई जाती ${\mbox{\it \hbar}}$?
- (ङ) क्रिस्टल क्षेत्र सिद्धांत के आधार पर किसी उपसहसंयोजन यौगिक में d⁴ आयन का इलेक्ट्रॉनिक विन्यास लिखिए यदि A₀ < P हो । क्या यह उपसहसंयोजन यौगिक उच्च प्रचक्रण अथवा निम्न प्रचक्रण संकुल है ?
- (च) $[\mathrm{Co(NH_3)_6}]^{3+}$ और $[\mathrm{Co(NH_3)_4Cl_2}]^+$ में से कौन हेट्रोलेप्टिक संकुल है और क्यों ?
- $(oldsymbol{arphi}) \quad [\mathrm{PtCl}_2(\mathrm{en})_2]^{2+}$ के प्रकाशिक समावयवों की संरचनाएँ बनाइए ।
- 32. (क) (i) निम्नलिखित के कारण दीजिए :
 - (1) कीटोनों की तुलना में ऐल्डिहाइडों का ऑक्सीकरण आसान होता है।
 - (2) ऐल्डिहाइडों के ऐल्फा (α) हाइड्रोजन परमाणुओं की प्रकृति अम्लीय होती है।

SECTION E

31. Answer any *five* of the following:

 $5 \times 1 = 5$

- (a) How is the crystal field splitting energy for octahedral complex (Δ_0) related to that of tetrahedral complex (Δ_t) ?
- (b) Write the IUPAC name of the following complex : $[PtCl_2(en)_2] \; (NO_3)_2$
- (c) Write the geometry and magnetic behaviour of the complex [Ni(CO)₄] on the basis of Valency Bond Theory (VBT).
- (d) What type of isomerism is shown by the complex $[Co(NH_3)_6]$ $[Cr(CN)_6]$?
- (e) For the coordination compound on the basis of crystal field theory, write the electronic configuration for d^4 ion if Δ_0 < P. Is the coordination compound a high spin or low spin complex?
- (f) Out of $[Co(NH_3)_6]^{3+}$ and $[Co(NH_3)_4Cl_2]^+$, which complex is heteroleptic and why?
- (g) Draw the structures of optical isomers of $[PtCl_2(en)_2]^{2+}$.
- **32.** (a) (i) Account for the following:
 - (1) Oxidation of aldehydes is easier as compared to ketones.
 - (2) The alpha (α) hydrogen atoms of aldehydes are acidic in nature.

56/2/1-12

23

P.T.O.

(ii) निम्नलिखित अभिक्रियाओं के उत्पाद लिखिए :

(1)
$$\stackrel{\text{COCH}_3}{\longrightarrow}$$
 ? + ? $\stackrel{\text{COCl}}{\longrightarrow}$ + $\stackrel{\text{COCl}}{\longrightarrow}$ + $\stackrel{\text{COCl}}{\longrightarrow}$ + $\stackrel{\text{COCl}}{\longrightarrow}$ + $\stackrel{\text{COCl}}{\longrightarrow}$ 2 + $\stackrel{\text{COCl}}{\longrightarrow}$ 3 + $\stackrel{\text{$

(iii) एथेनॉइक अम्ल और ऐथेनैल में विभेद करने के लिए सरल रासायिनक परीक्षण
 2+2+

अथवा

- (ख) (i) बेन्ज़ैल्डिहाइड के 2,4-डाइनाइट्रोफ़ेनिलहाइड्रेज़ोन की संरचना बनाइए।
 - (ii) निम्नलिखित को उनकी HCN के प्रति अभिक्रियाशीलता के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

$$\mathrm{CH_3COCH_3}$$
 , $(\mathrm{CH_3})_3\mathrm{C}$ – $\mathrm{COCH_3}$, $\mathrm{CH_3CHO}$

- (iii) आप फ़ेनिल मैग्नीशियम ब्रोमाइड का बेन्ज़ोइक अम्ल में किस प्रकार रूपान्तरण करेंगे ?
- (iv) बेन्ज़ैल्डिहाइड और ऐथेनैल में विभेद करने के लिए सरल रासायनिक परीक्षण लिखिए ।
- (v) निम्नलिखित अभिक्रिया में मुख्य उत्पाद लिखिए:

$$\begin{array}{c} \operatorname{CH_3-C-CH_2-COOC_2H_5} \xrightarrow[(ii)]{(ii)} \operatorname{H}^+ \\ 0 \end{array}?$$

(ii) Write the products in the following reactions:

(1)
$$\frac{\text{COCH}_{3}}{\text{NaOH}/I_{2}} ? + ?$$

$$\frac{\text{COCl}}{\text{COCl}} + (\text{CH}_{3})_{2}\text{Cd} \longrightarrow ? + \text{CdCl}_{2}$$

(iii) Give a simple chemical test to distinguish between ethanoic acid and ethanal. 2+2+1=5

OR

- (b) (i) Draw structure of the 2,4-dinitrophenylhydrazone of benzaldehyde.
 - (ii) Arrange the following in increasing order of their reactivity towards HCN : $CH_3COCH_3\ (CH_3)_3C-COCH_3\ , CH_3CHO$
 - (iii) How can you convert phenyl magnesium bromide to benzoic acid?
 - (iv) Give a simple chemical test to distinguish between benzaldehyde and ethanal.
 - (v) Write the main product in the following reaction:

$$\begin{array}{c} \mathrm{CH_3-C-CH_2-COOC_2H_5} \xrightarrow{(i) \mathrm{NaBH_4}} ? \\ \mathrm{II} \\ \mathrm{O} \end{array} ? \\ 5\times 1=5 \end{array}$$

- $0.05~{
 m M~CH_3COOH}$ विलयन का प्रतिरोध $100~{
 m SMP}$ पाया गया । यदि (**क**) (i) 33. सेल स्थिरांक $0.0354~{
 m cm}^{-1}$ है, तो ऐसीटिक अम्ल विलयन की मोलर चालकता परिकलित कीजिए।
 - फैराडे के विद्युत-अपघटन का प्रथम नियम लिखिए । 1 मोल MnO_4^- को (ii) ${
 m Mn}^{2+}$ में अपचयन के लिए फैराडे में कितने आवेश की आवश्यकता होगी ?

3+2=5

अथवा

- $0.0025~{
 m mol}~{
 m L}^{-1}$ ऐसीटिक अम्ल की चालकता $5.25 imes 10^{-5}~{
 m S~cm}^{-1}$ है । (i) (碅) यदि ऐसीटिक अम्ल के लिए $\Lambda_{
 m m}^{
 m o}$ का मान $390~{
 m S}~{
 m cm}^2~{
 m mol}^{-1}$ है, तो इसकी वियोजन मात्रा का परिकलन कीजिए।
 - लेड संचायक बैटरी के ऐनोड, कैथोड और समग्र अभिक्रिया लिखिए। 3+2=5 (ii)

- 33. (a) (i) The resistance of 0.05 M CH₃COOH solution is found to be 100 ohm. If the cell constant is 0.0354 cm⁻¹, calculate the molar conductivity of the acetic acid solution.
 - (ii) State Faraday's first law of electrolysis. How much charge in Faraday is required for the reduction of 1 mol of MnO_4^- to Mn^{2+} ? 3+2=5

OR

- (b) (i) The conductivity of $0.0025~\text{mol}~L^{-1}$ acetic acid is $5.25\times 10^{-5}~\mathrm{S~cm}^{-1}$. Calculate its degree of dissociation if Λ_{m}^{0} for acetic acid is $390~\mathrm{S~cm}^{2}~\text{mol}^{-1}$.
 - (ii) Write anode, cathode and overall reaction of lead storage battery. 3+2=5