

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मख-पष्ठ पर अवश्य लिखें। Candidates must write the Q.P. Code on the title page of the answer-book.

- कपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं। (I)Please check that this question paper contains 23 printed pages.
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर (II)लिखें।
 - Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (III) कपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं। Please check that this question paper contains 33 questions.
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the Serial Number of the question in the answer-book at the given place before attempting it.

- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पहेंगे और इस अवधि के दौरान वे उत्तर-पृस्तिका पर कोई उत्तर नहीं लिखेंगे।
 - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not

write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) **CHEMISTRY** (Theory)

निर्धारित समय : 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : 70

Maximum Marks: 70

P.T.O.

56/5/2

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

(i) इस प्रश्न-पत्र में 33 प्रश्न है। सभी प्रश्न अनिवार्य हैं।

tion in the second

- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ**, एवं ङ।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) खण्ड ख प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है।
- (v) **खण्ड ग** प्रश्न संख्या **22** से **28** तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **3** अंकों का है।
- (vi) खण्ड घ प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$

- 1. रसायन प्रयोगशाला में गुणात्मक विश्लेषण करते समय अभिषेक ने एक परखनली में पीले रंग का पोटैशियम क्रोमेट विलयन डाला। वह यह देखकर अचिम्भत हो गया कि विलयन का रंग तुरंत नारंगी रंग में बदल गया। उसे यह अनुभूति हुई कि परखनली साफ नहीं थी अपितु उसमें किसी अन्य द्रव की कुछ बूँदें थीं। निम्नलिखित पदार्थों में से परखनली में पोटैशियम क्रोमेट विलयन डालने से पहले कौन-सा सर्वाधिक संभावित द्रव उपस्थित था?
 - (A) सोडियम हाइड्रोजन कार्बोनेट विलयन
 - (B) मेथिल ऑरेंज विलयन
 - (C) सोडियम हाइड्रॉक्साइड विलयन
 - (D) HCl विलयन
- 2. उत्प्रेरक परिवर्तित करते हैं :
 - (A) साम्यावस्था स्थिरांक
 - (B) अभिक्रिया की एन्थैल्पी
 - (C) अभिक्रिया की गिब्ज़ ऊर्जा
 - (D) अभिक्रिया की सक्रियण ऊर्जा

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into five sections Section A, B, C, D and E.
- (iii) Section A questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) **Section B** questions number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) **Section E** questions number **31** to **33** are long answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1=16$

- 1. While doing qualitative analysis in chemistry lab, Abhishek added yellow coloured potassium chromate solution into a test tube. He was surprised to see the colour of the solution changing immediately to orange. He realised that the test tube was not clean and contained a few drops of some liquid. Which of the following substances will be the most likely liquid to be present in the test tube before adding potassium chromate solution?
 - (A) Sodium hydrogen carbonate solution
 - (B) Methyl orange solution
 - (C) Sodium hydroxide solution
 - (D) HCl solution
- **2.** The role of a catalyst is to change:
 - (A) equilibrium constant
 - (B) enthalpy of reaction
 - (C) Gibbs energy of reaction
 - (D) activation energy of reaction

56/5/2

3. स्तंभ I में दिए गए सेल के प्रकार को स्तंभ II में दिए गए उनके उपयोग से मिलान कीजिए :

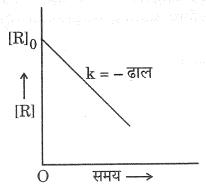
स्तंभ I	स्तंभ II
i. लेड संचायक सेल	a. दीवार घड़ी
ii. मर्क्यूरी सेल	b. अपोलो अंतरिक्ष कार्यक्रम
iii. शुष्क सेल	c. कलाई घड़ी
iv. ईंधन सेल	d. इनवर्टर

(A) i-a, ii-b, iii-c, iv-d

(B) i-d, ii-c, iii-a, iv-b

(C) i-c, ii-d, iii-b, iv-a

(D) i-b, ii-a, iii-d, iv-c


4. CH_3CH_2OH को CH_3CHO में परिवर्तित किया जा सकता है :

- (A) उत्प्रेरकीय हाइड्रोजनन द्वारा
- (B) LiAlH_4 के साथ अभिक्रियित करके
- (C) PCC के साथ अभिक्रियित करके
- (D) $KMnO_4$ के साथ अभिक्रियित करके

5. $CH_3 - CH_2 - N(CH_3) - CH_2 - CH_2 - CH_3$ का IUPAC नाम है :

- (A) N-मेथिलपेन्टेन-2-ऐमीन
- (B) N-एथिल-N-मेथिलप्रोपेन-1-ऐमीन
- (C) N,N-डाइएथिलप्रोपेन-1-ऐमीन
- (D) N,N-डाइमेथिलप्रोपेन-1-ऐमीन

6. अभिकारक की सांद्रता [R] और समय 't' के मध्य आलेख नीचे दर्शाया गया है। यह आलेख दी गई अभिक्रिया की कोटि में से किसको इंगित करता है ?

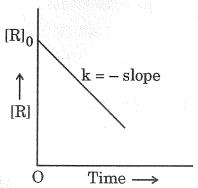
- (A) तृतीय कोटि
- (C) प्रथम कोटि

- (B) द्वितीय कोटि
- (D) शून्य कोटि

3. Match the type of cell given in Column I with their use given in Column II.

	The state of the s	100		
	$Column\ I$		Column II	
i.	Lead storage cell	a.	Wall clock	
ii.	Mercury cell	b.	Apollo Space	Programme
iii.	Dry cell	c.	Wrist watch	
iv.	Fuel cell	d.	Inverter	

- (A) i-a, ii-b, iii-c, iv-d
- (B) i-d, ii-c, iii-a, iv-b
- (C) i-c, ii-d, iii-b, iv-a
- (D) i-b, ii-a, iii-d, iv-c


4. CH₃CH₂OH can be converted to CH₃CHO by :

- (A) catalytic hydrogenation
- (B) treatment with $LiAlH_4$
- (C) treatment with PCC
- (D) treatment with KMnO₄

5. The IUPAC name for $CH_3 - CH_2 - N(CH_3) - CH_2 - CH_2 - CH_3$ is :

- (A) N-methylpentan-2-amine
- (B) N-ethyl-N-methylpropan-1-amine
- (C) N,N-diethylpropan-1-amine
- (D) N,N-dimethylpropan-1-amine

6. A plot between concentration of reactant [R] and time 't' is shown below. Which of the given order of reaction is indicated by the graph?

(A) Third order

(B) Second order

(C) First order

(D) Zero order

7.	एथिल ब्रोमाइड, ऐल्कोहॉली सिल्वर नाइट्राइट के साथ अभिक्रिया करके देता है :					
	(A)	एथिल नाइट्राइट		(B)	नाइट्रोएथेन	
	(C)	नाइट्रोमेथेन		(D)	एथीन	
8.	निम्नलि	खित जलीय विलयनों में से किसका हिमांक उच	च्वतम ह	होगा ?		
	(A)	1.0 M KCl		(B)	$1.0~\mathrm{M~Na_2SO_4}$	
	(C)	1∙0 M ग्लूकोस		(D)	1·0 M AlCl ₃	
9.	निम्नलि	खित में से कौन-सा ऐल्डिहाइड कैनिज़ारो अभि	क्रिया दे	गा ?		
	(A)	$CH_3 - CH - CHO$				
		$^{ m l}_{ m CH_3}$				
	(B)	$(CH_3)_3C$ CHO				
	(C)	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CHO}$				
	(D)	$\mathrm{CH_3} - \mathrm{CH} - \mathrm{CH} - \mathrm{CHO}$				
		CH ₃ CH ₃				
10.	निम्नलि	खित समूहों में से किसके दोनों आयन जलीय वि	वेलयन	में रंगीन है		
	I. C	The state of the s			IV. Fe ²⁺	
	[परमाणु	क्रमांक : $Cu = 29$, $Ti = 22$, $Co = 27$,	Fe =	26]	nak a famili ping ya ingning Kalanda a maka a salah salah	
	(A)	I और II		(B)	II और III	
	(C)	III और IV		(D)	I और IV	
11.	निम्नलि	खित अणुओं में से किसकी प्रकृति किरेल है ?		wire/s		
	(A)	1-क्लोरोप्रोपेन	(B)	2-क्लोर	ोप्रोपेन	
	(C)	1-क्लोरोब्यूटेन	(D)	2-क्लोर	ोब्यूटेन	
12.	$\mathrm{CH_{3}C}$	H ₂ CHO और CH ₃ CH ₂ COOH के मध्य	किसके	द्वारा वि	भेद किया जा सकता है ?	
	(A)	सोडियम बाइकार्बोनेट परीक्षण			िपरीक्षण	
	(C)	आयोडोफॉर्म परीक्षण	(D)	ल्यूकास	। परीक्षण	

7.		reatment of ethyl bromide v	vith alcoholi (B)	and the state of the control of the state of
	(A) (C)	ethyl nitrite nitromethane	(D)	nitroethane ethene
8.	point (A)	h of the following aqueous? 1.0 M KCl	solutions w (B)	
	(C)	1.0 M Glucose		1·0 M AlCl ₃
9.	(A)	h of the following aldehydes ${ m CH}_3$ – ${ m CH}$ – ${ m CHO}$ ${ m CH}_3$	and the specific of	
	(B) (C) (D)	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CHO}$		
	(D)	CH ₃ - CH - CH - CHO 		
10.	In w soluti	문화문화가 보통한 사용하는 경우 전문화를 적용하면 있다면 사용하는 사용하는 것이 되었다. 그 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는	ıps are bot	h ions coloured in aqueous
	I. C	u ⁺ II. Ti ⁴⁺	III. Co ²⁺	IV. Fe ²⁺
	[Aton	nic number : Cu = 29, Ti =	22, $Co = 27$	7, $Fe = 26$]
	(A)	I and II	(B)	II and III
	(C)	III and IV	(D)	I and IV
11.	Whic	h of the following molecules	is chiral in	nature?
	(A)	1-chloropropane	(B)	2-chloropropane
	(C)	1-chlorobutane	(D)	2-chlorobutane
12.	CH ₃ C	$\mathrm{CH_{2}CHO}$ and $\mathrm{CH_{3}CH_{2}COOM}$	H can be dis	tinguished by:
	(A)	Sodium bicarbonate test	(B)	Hinsberg test
	(C)	Iodoform test	(D)	Lucas test
56/5/2			#7#	P.T.O.

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- 13. अभिकथन (A) : ऐल्किल हैलाइडों के क्वथनांकों के घटने का क्रम RI > RBr > RCl > RF है । and RI > RBr > RCl > RF है ।
- 14. अभिकथन (A): आयनिक विलयन के प्रतिरोध को मापने के लिए AC स्रोत का उपयोग किया जाता है।
 - कारण (R): यदि DC स्रोत का उपयोग किया जाता है तो आयिनक विलयन की सांद्रता बदल जाएगी।
- **15.** अभिकथन (A) : ताप में वृद्धि के साथ हेनरी नियम स्थिरांक (K_H) घटता है। कारण (R) : जैसे-जैसे ताप बढ़ता है, द्रवों में गैसों की विलेयता घटती है।
- **16.** अभिकथन (A) : जैसे-जैसे ऐल्किल समूह का आकार बढ़ता है, ऐल्डिहाइडों और कीटोनों की जल में घुलनशीलता घटती जाती है।
 - कारण (R): ऐल्डिहाइडों और कीटोनों में द्विध्रुव-द्विध्रुव अन्योन्यक्रियाएँ होती हैं।

रवण्ड ख

		७७५ ख	
17.	mol/L में KCl विलयन की सांद्रता	S cm ⁻¹ में 298·15 K	$S~cm^2~mol^{-1}~$ में $298\cdot 15~K$ पर मोलर चालकता
	का साद्रता	पर चालकता	पर मारार वाराकता
	1.000	10-1113 (1744)	111:3
	0.100	0.0129	129.0
	0.010	0.00141	141:0

ऊपर दिए गए आँकड़ों के आधार पर, सांद्रता के साथ चालकता और मोलर चालकता में परिवर्तन के लिए संभावित कारण दीजिए। For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 13. Assertion (A): The boiling points of alkyl halides decrease in the order RI > RBr > RCl > RF.
 - Reason (R): The van der Waals forces of attraction decrease in the order RI > RBr > RCl > RF.
- **14.** Assertion (A): For measuring resistance of an ionic solution an AC source is used.
 - Reason (R): Concentration of ionic solution will change if DC source is used.
- 15. Assertion (A): Henry's law constant (K_H) decreases with increase in temperature.
 - Reason (R): As the temperature increases, solubility of gases in liquids decreases.
- **16.** Assertion (A): The solubility of aldehydes and ketones in water decreases with increase in size of the alkyl group.
 - Reason (R): Aldehydes and ketones have dipole-dipole interaction.

SECTION B

17.	1	entration of KCl tion in mol/L	Conductivity at 298·15 K in S cm ⁻¹	Molar Conductivity at 298·15 K in S cm ² mol ⁻¹
		1.000	0.1113	111.3
		0.100	0.0129	129.0
		0.010	0.00141	141.0

Based on the data given above, give plausible reason for the variation of conductivity and molar conductivity with concentration.

P.T.O.

18. (क) $CaCl_2$ (मोलर द्रव्यमान = $111~g~mol^{-1}$) के 3~g को 260~g जल में घोलने पर बनने वाले विलयन के क्वथनांक का उन्नयन, यह मानते हुए कि $CaCl_2$ पूर्णतया वियोजित हो गया है, परिकलित कीजिए। (जल के लिए $K_b=0.52~K~kg~mol^{-1}$)

अथवा

- (ख) 'X' और 'Y' द्रव आदर्श विलयन बनाते हैं। शुद्ध 'X' और शुद्ध 'Y' के वाष्प दाब क्रमश: 120 mm Hg और 160 mm Hg हैं। 'X' और 'Y' के समान मोलों को मिलाकर बनने वाले विलयन का वाष्प दाब परिकलित कीजिए।
- 19. (क) वेग स्थिरांक की परिभाषा लिखिए।
 - (ख) उस अभिक्रिया कोटि की पहचान कीजिए जिसका वेग स्थिरांक $4.5 \times 10^{-5} \ {
 m L} \ {
 m mol}^{-1} \ {
 m s}^{-1}$ है।
- **20.** $413~{
 m K}$ पर सांद्र ${
 m H}_2{
 m SO}_4$ के साथ एथिल ऐल्कोहॉल के निर्जलन की क्रियाविधि लिखिए।
- **21.** (क) 3-पेन्टेनोन और 2-पेन्टेनोन के मध्य विभेद करने के लिए एक सरल रासायनिक परीक्षण दीजिए। 1
 - (ख) क्लीमेन्सन अपचयन के लिए समीकरण लिखिए।

खण्ड ग

22. अभिक्रिया $A + B \rightarrow 3$ तपाद के लिए, अभिकारकों की विभिन्न प्रारंभिक सांद्रताओं के लिए निम्नलिखित प्रारंभिक वेग प्राप्त हुए :

क्रमांक	$[A]/mol\ L^{-1}$	$[B]/mol\ L^{-1}$	प्रारंभिक वेग / $mol~L^{-1}~s^{-1}$
1	0.1	0.1	0.05
2	0.2	0.1	0.10
3	0.1	0.2	0.05

A और B के सापेक्ष अभिक्रिया की कोटि और अभिक्रिया की समग्र कोटि ज्ञात कीजिए।

3

2

1

1

18. (a) Calculate the elevation of boiling point of a solution when 3 g of $CaCl_2$ (Molar mass = 111 g mol⁻¹) was dissolved in 260 g of water, assuming that $CaCl_2$ undergoes complete dissociation. (K_b for water = 0.52 K kg mol⁻¹)

OR

(b) Liquids 'X' and 'Y' form an ideal solution. The vapour pressure of pure 'X' and pure 'Y' are 120 mm Hg and 160 mm Hg respectively.

Calculate the vapour pressure of the solution containing equal moles of 'X' and 'Y'.

19. (a) Define rate constant.

- (b) Identify the reaction order which has a rate constant of $4.5 \times 10^{-5} \, \mathrm{L \ mol^{-1} \ s^{-1}}$.
- 20. Write the mechanism of dehydration of ethyl alcohol with conc. $\rm H_2SO_4$ at 413 K.
- 21. (a) Give a simple chemical test to distinguish between 3-pentanone and 2-pentanone.
 - (b) Write an equation for Clemmensen reduction.

SECTION C

22. For the reaction $A + B \rightarrow Products$, the following initial rates were obtained at various initial concentrations of reactants:

Sl. No.	$[A]/mol\ L^{-1}$	$[B]/mol\ L^{-1}$	Initial rate/mol L^{-1} s^{-1}
1	0.1	0.1	0.05
2	0.2	0.1	0.10
3	0.1	0.2	0.05

Determine the order of the reaction with respect to A and B and overall order of the reaction.

3

2

2

1

1

2

1

23.	(ক)	श्वेता ने	ा दो द्रवों A और B के प्रत्येक के 10 mL को परस्पर मिलाया। मिलाने पर विलयन	
		का आर	यतन 20·2 mL पाया गया ।	
		(i)	द्रवों को मिलाने पर आयतन में परिवर्तन क्यों हुआ ?	1
		(ii)	मिलाने पर ताप बढ़ेगा या घटेगा ?	1
		(iii)	इस प्रकार के विलयन का एक उदाहरण दीजिए।	1
	,		े अथवा - अथवा	
	(ख)	(i)	पहाड़ी इलाकों में बर्फ से ढकी सड़कों को साफ करने में नमक छिड़कने से किस तरह	
			मदद मिलती है ?	1
		(ii)	क्या होता है जब लाल रुधिर कोशिकाओं को 0.5% (द्रव्यमान/आयतन) सोडियम	
٠			क्लोराइड विलयन में रखा जाता है ? अपने उत्तर का औचित्य दीजिए।	1
		(iii)	प्रतिलोम परासरण का एक अनुप्रयोग लिखिए।	1
24.	(क)	संयोजव	कता आबंध सिद्धांत के आधार पर $[\mathrm{NiCl}_4]^{2-}$ की ज्यामिति और चुंबकीय लक्षण की	
		व्याख्य	ा कीजिए। [परमाणु क्रमांक : Ni = 28]	2
	(ख)	[Co(e	$ m en)_2 Cl_2]^+$ के संभावित समावयव बनाइए।	1
25.	(क)	निम्नलि	निखित में से किसमें जलीय क्षार के साथ अभिक्रिया के उपरान्त विन्यास में प्रतिलोमन	
			भौर क्यों ? -क्लोरोप्रोपेन अथवा (ii) 2-क्लोरो-2-मेथिलप्रोपेन	1
	(ख)	नीचे र्द	ी गई अभिक्रिया में (A) अथवा (B) में से कौन-सा मुख्य उत्पाद होगा ? अपने उत्तर के	
			उपयुक्त कारण दीजिए।	2
		CH_3	$- CH_2 - CH(Br) - CH_3 + ऐल्कोहॉली KOH $	
			$CH_3 - CH_2 - CH = CH_2 (A) + CH_3 - CH = CH - CH_3 (B)$	

23. Shweta mixed two liquids A and B of 10 mL each. After mixing, the (a) volume of the solution was found to be 20.2 mL. (i) Why was there a volume change after mixing the liquids? 1 Will there be an increase or decrease of temperature after (ii) mixing? 1 Give one example for this type of solution. 1 OR (b) How does sprinkling of salt help in clearing the snow covered (i) roads in hilly areas? 1 (ii) happens when red blood cells 0.5% (mass/vol) NaCl solution? Justify your answer. 1 (iii) Write an application of reverse osmosis. 1 Based on Valence Bond Theory, explain the geometry and magnetic 24. (a) character of $[NiCl_4]^{2-}$. [Atomic number : Ni = 28] 2 (b) Draw the possible isomers of [Co(en)₂Cl₂]⁺. 1 25. Among the following, which will have inversion of configuration on (a) reaction with aqueous alkali and why? 1 (i) 1-chloropropane OR (ii) 2-chloro-2-methylpropane (b) Which of the following (A) or (B) will be the major product in the reaction given below? Give a suitable reason for your answer. 2

 $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH} = \mathrm{CH_2}\left(\mathrm{A}\right) + \mathrm{CH_3} - \mathrm{CH} = \mathrm{CH} - \mathrm{CH_3}\left(\mathrm{B}\right)$

 $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH(Br)} - \mathrm{CH_3} + \mathrm{alc.} \; \mathrm{KOH} \longrightarrow$

26. (क) विलियम्सन संश्लेषण के लिए रासायनिक समीकरण लिखिए।
(ख) ०-नाइट्रोफ़ीनॉल और p-नाइट्रोफ़ीनॉल को पृथक करने की एक विधि दीजिए। सिम्मिलत सिद्धांत की व्याख्या कीजिए।
27. निम्निलिखित अभिक्रिया अनुक्रम में P, Q और R को पहचानिए:

$$P \xrightarrow{NH_3} CH_3COO^-NH_4^+ \xrightarrow{\Delta} Q$$

$$PCl_5 \to R$$

- 28. (क) उस विटामिन का नाम लिखिए जिसकी कमी से प्रणाशी रक्ताल्पता (pernicious anaemia) हो जाती है।
 - (ख) गोलिकाकार और रेशेदार प्रोटीन के मध्य कोई दो अंतर लिखिए।

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

29. 1893 में वर्नर का उपसहसंयोजन सिद्धांत, उपसहसंयोजन संकुलों में आबंधों की व्याख्या करने के लिए पहला प्रयास था। यह स्मरणीय है कि 1897 में जे.जे. थॉमसन द्वारा इलेक्ट्रॉन की खोज तथा संयोजकता के इलेक्ट्रॉनिक सिद्धांत से पहले ही यह सिद्धांत प्रतिपादित किया गया था। वर्नर के पास कोई भी आधुनिक उपकरणी तकनीक नहीं थी और उसके सभी अध्ययन सामान्य प्रायोगिक तकनीकों द्वारा किए गए थे। वर्नर संकुलों में आबंधन की प्रकृति की व्याख्या करने में समर्थ हुआ और उसने निष्कर्ष निकाला कि संकुलों में धातु दो भिन्न प्रकार की संयोजकताएँ प्रदर्शित करती हैं: प्राथमिक और द्वितीयक। प्राथमिक संयोजकताएँ सामान्य रूप से आयननीय होती हैं जबिक द्वितीयक संयोजकताएँ अन-आयननीय होती हैं।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (क) एक मोल CrCl₃ 4H₂O, AgNO₃ विलयन के आधिक्य के साथ अभिक्रियित किए जाने पर एक मोल AgCl अवक्षेपित करता है। (i) संकुल का संरचनात्मक सूत्र और (ii) Cr की द्वितीयक संयोजकता लिखिए।
- (ख) द्वि-लवण और संकुल में क्या अंतर है ?

2

1

1

2

3

1

2

14

56/5/2

- **26.** (a) Write the chemical equation for Williamson's synthesis.
 - (b) Give a method to separate *o*-nitrophenol and *p*-nitrophenol. Explain the principle involved.
- **27.** Identify P, Q and R in the following reaction sequence :

- **28.** (a) Name the vitamin whose deficiency causes pernicious anaemia. 1
 - (b) Write any two differences between globular and fibrous proteins.

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

29. Werner's coordination theory in 1893 was the first attempt to explain the bonding in coordination complexes. It must be remembered that this theory was put forward before the electron had been discovered by J.J. Thomson in 1897, and before the electronic theory of valency. Werner did not have any of the modern instrumental techniques and all his studies were made using simple experimental techniques. Werner was able to explain the nature of bonding in complexes and he concluded that in complexes, the metal shows two different sorts of valency: primary and secondary. Primary valences are normally ionisable whereas secondary valences are non ionisable.

Answer the following questions:

- (a) One mole of CrCl₃. 4H₂O precipitates one mole of AgCl when treated with excess of AgNO₃ solution. Write (i) the structural formula of the complex, and (ii) the secondary valency of Cr.
- (b) What is the difference between a complex and a double salt?

2

1

2

3

**************************************	(<u>11</u>)	(i)	निम्नलिखित संकुलों को उनके विलयन में	चालकता के बढ़ते हुए क्रम में व्यवस्थित	, på
			कीजिए :		1
			$[\operatorname{Cr}(\operatorname{NH}_3)_3\operatorname{Cl}_3], [\operatorname{Cr}(\operatorname{NH}_3)_6]\operatorname{Cl}_3$, $[Cr(NH_3)_5Cl]Cl_2$	
			अथवा		
	(1 1)	(ii)	उपसहसंयोजन यौगिकों की प्राथमिक और	द्वितीयक संयोजकताओं के बीच दो अंतर	
			लिखिए।		1
30.	कार्बोह	हाइड्रेट पॉ	लिहाइड्रॉक्सी ऐल्डिहाइड अथवा कीटोन हैं ज	ो बहुत अधिक संरचनात्मक विविधताओं	
,	को नि	रूपित क	न्रते हैं जिसका कारण है दिक्-स्थान में परम	ाणुओं की विभिन्न व्यवस्था, फलस्वरूप	
	उनके	सैकड़ों ि	त्रेविम समावयवी बन जाते हैं। यद्यपि आ	धेकतर त्रिविम समावयवों के रासायनिक	
	गुणधा	र्न ज्यादा	भिन्न नहीं होते, लेकिन उनकी उपापचय व	ति दर और जैविक प्रणालियों में उपयोग	
			से भिन्न होता है तथा वह कार्बोहाइड्रेटों के		
		~ (ताधेट जो त्रितिम आकाश में परमाणओं की		

त्रिविम समावयव कहलाते हैं। त्रिविम समावयवों की संख्या का अनुमान सैद्धांतिक रूप से 2n सूत्र का

उपयोग करके लगाया जा सकता है जहाँ 'n' अणु में उपस्थित त्रिविम केन्द्र अथवा असममित (किरेल)

कार्बन परमाणुओं की संख्या है। इन त्रिविम समावयवों में से कुछ संरचनाएँ, जो एक-दूसरे की दर्पण

निम्नलिखित प्रश्नों के उत्तर दीजिए:

(क)	ग्लूकोस में ऐल्डिहाइड समूह और ऋजु श्रृंखला की उपस्थिति दर्शाने के लिए रासायनिक	
1313	अभिक्रियाएँ दीजिए।	2
(ख)	(i) ऐनोमर को परिभाषित कीजिए।	1
,	अथवा । अस्ति स्टब्स्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट्रिक्ट	

1

β-D-ग्लूकोपाइरैनोस की संरचना बनाइए। (ख)

प्रतिबिंब होती हैं, प्रतिबिंब रूप (एनैन्टिओमर) कहलाती हैं।

सूक्रोस को अपवृत (प्रतीप) शर्करा कहा जाता है। समझाइए। (11)

(c) (i) Arrange the following complexes in the increasing order of conductivity of their solution: 1 $[Cr(NH_3)_3Cl_3], [Cr(NH_3)_6]Cl_3, [Cr(NH_3)_5Cl]Cl_2$ OR Write two differences between primary and secondary (c) (ii) valences in coordination compounds. 1 Carbohydrates are polyhydroxy aldehydes or ketones that represent enormous structural diversity in terms of the arrangement of atoms in space, resulting in hundreds of stereoisomers. Although the chemical properties of most stereoisomers may not be very different, their metabolic rate and utilization in biological systems is significantly different and known to influence the overall carbohydrate metabolism. Structural variants, which arise due to a different arrangement of atoms in three-dimensional space are known as stereoisomers. The number of stereoisomers can be theoretically estimated by using the formula 2n. where 'n' is the number of stereocenters or asymmetric (chiral) carbon atoms in a molecule. Out of these stereoisomers, there are some structures, which are mirror images of each other, and they are referred to as enantiomers.

Answer the following questions:

(a) Give chemical reactions to show the presence of an aldehydic group and straight chain in glucose.

(b) (i) Define anomers.

OR

(b) (ii) Draw the structure of β -D-Glucopyranose.

(c) Sucrose is known as invert sugar. Explain.

1

56/5/2

30.

17

P.T.O.

2

1

खण्ड ड

31.	(क)	(i)	रसायन विज्ञान की प्रायोगिक कक्षा में, शिक्षक ने अपने छात्रों को $\mathrm{C}_2\mathrm{H}_7\mathrm{N}$ आण्विक
			सूत्र वाला कोई ऐमीन 'X' दिया और छात्रों से कहा कि इस ऐमीन के प्रकार को
			पहचानिए। छात्रों में से एक छात्रा, नीता ने प्रेक्षित किया कि यह $ m C_6H_5SO_2Cl$ के
			साथ अभिक्रिया करके एक यौगिक देता है जो NaOH विलयन में घुल जाता है।
			क्या आप नीता की इस यौगिक 'X' को पहचानने में सहायता कर सकते हैं ?
	्री औ	(ii)	निम्नलिखित को उनकी जलीय प्रावस्था में $ m pK_b$ मान के बढ़ते हुए क्रम में व्यवस्थित
,			कीजिए: १०० १० १० १० १० १० १० १० १० १० १० १० १०
			$C_6H_5NH_2$, $(CH_3)_2NH$, NH_3 , CH_3NH_2 , $(CH_3)_3N$
		(iii)	ऐनिलीन नाइट्रोकरण द्वारा ऑर्थो और पैरा उत्पादों के साथ-साथ यथेष्ट मात्रा में मेटा

1

1

1

2

1

2

(iv) ऐनिलीन का रूपान्तरण कीजिए:

उत्पाद भी देती है। क्यों ?

- (I) p-ब्रोमोऐनिलीन में
- (II) फ़ीनॉल में

अथवा

- (ख) (i) अरुण ने एथिलऐमीन और CHCl3 के मिश्रण को एथेनॉलिक KOH के साथ गर्म किया, जिससे एक दुर्गन्धयुक्त गैस बनी। सम्मिलित रासायनिक समीकरण लिखिए।
 - (ii) निम्नलिखित अभिक्रियाओं में A और B को पहचानिए :

$$\begin{array}{c} \text{NH}_2 \\ \text{A} & \xrightarrow{\text{H}_2/\operatorname{Pd}} & \stackrel{\text{NH}_2}{\longleftarrow} \\ \text{एथेनॉल} & & \end{array} \\ \text{Br}_2/\operatorname{NaOH} \\ \text{B} \end{array}$$

- (iii) ऐनिलीन का निम्नलिखित में रूपान्तरण कीजिए:
 - (I) बेन्ज़ीन
 - (II) सल्फैनिलिक अम्ल

SECTION E

31. (a) (i) In a chemistry practical class, the teacher gave his students an amine 'X' having molecular formula C_2H_7N , and asked the students to identify the type of amine. One of the students, Neeta, observed that it reacts with $C_6H_5SO_2Cl$, to give a compound which dissolves in NaOH solution. Can you help Neeta to identify the compound 'X'?

(ii) Arrange the following in the increasing order of their pK_b value in aqueous phase :

1

1

 $C_6H_5NH_2$, $(CH_3)_2NH$, NH_3 , CH_3NH_2 , $(CH_3)_3N$

(iii) Aniline on nitration gives considerable amount of meta product along with ortho and para products. Why?

1

(iv) Convert aniline to:

2

- (I) p-bromoaniline
- (II) phenol

OR

(b) (i) Arun heated a mixture of ethylamine and CHCl₃ with ethanolic KOH, which forms a foul smelling gas. Write the chemical equation involved.

_

1

(ii) Identify A and B in the following reactions:

2

$$A \xrightarrow{H_2/Pd} \bigoplus_{\text{ethanol}} \text{NH}_2 \\ \longleftarrow Br_2/\text{NaOH} \\ B$$

Convert aniline to :

2

- (I) benzene
- (II) sulphanilic acid

56/5/2

(iii)

19

P.T.O.

32.	(क)	(i)	जब पायरोलुसाइट अयस्क को वायु की उपस्थिति में KOH के साथ संगलित किया	
			जाता है तो गाढ़े हरे रंग का उत्पाद 'A' प्राप्त होता है जो अम्लीय माध्यम में बैंगनी रंग	
			के यौगिक 'B' में परिवर्तित हो जाता है।	
			(I) 'A' और 'B' के सूत्र लिखिए।	
			$({ m II})$ यौगिक 'B' की अम्लीय माध्यम में ${ m Fe}^{2+}$ के साथ अभिक्रिया का आयनिक	
			समीकरण लिखिए।	2
		(ii)	कारण दींजिए:	3
			$ m (I)$ जलीय विलयन में $ m Ce^{4+}$ एक अच्छा ऑक्सीकारक है।	
			(II) हैंथेनॉयड आकुंचन की तुलना में एक तत्त्व से दूसरे तत्त्व के बीच ऐक्टिनॉयड	
			आकुंचन अधिक होता है।	
			(III) $\mathrm{E}^{\circ}_{\mathrm{Zn}^{2+}/\mathrm{Zn}}$ का मान अपेक्षा से अधिक ऋणात्मक है, जबिक	
			$\mathrm{E}^{\circ}_{\mathrm{Cu}^{2+}/\mathrm{Cu}}$ धनात्मक है।	
			अथवा	
	(ख)	(i)	आवर्ती गुणधर्मों का अध्ययन करते समय, आरती ने Hf के परमाणु आकार में एक	
			असामान्य व्यवहार देखा। उसने पाया कि यद्यपि Hf उसी समूह में ${ m Zr}$ के ठीक नीचे है, फिर भी उनके परमाणु आकार लगभग समान हैं।	
			(I) ऊपर दिए गए व्यवहार के लिए कौन-सी परिघटना उत्तरदायी है ? उसकी	
			परिभाषा लिखिए।	
			(II) उपर्युक्त परिघटना के किसी अन्य परिणाम का उल्लेख कीजिए।	2
	•	(ii)	निम्नलिखित के लिए कारण दीजिए :	3
			(I) संक्रमण धातुएँ उत्प्रेरकीय गुणधर्म दर्शाती हैं।	
			(II) संक्रमण धातुओं की कणन एन्थैल्पी उच्च होती है।	
			(III) Se एक संक्रमण तत्त्व है जबकि Zn नहीं।	

When pyrolusite ore is fused with KOH, in presence of air, a (i) (a) 32. dark green coloured product 'A' is obtained which changes to purple coloured compound 'B' in acidic medium. Write the formulae of 'A' and 'B'. (I)Write the ionic equation for the reaction when (II)compound 'B' reacts with Fe²⁺ in acidic medium. 2 Give reasons: 3 (ii) Ce⁴⁺ in aqueous solution is a good oxidising agent. (I)(II)The actinoid contraction is greater from element to element than lanthanoid contraction. $E_{Z_n^{2+}/Z_n}^{\circ}$ value is more negative than expected, (III) whereas $E^{\circ}_{Cu^{2+}/Cu}$ is positive.

OR

- (b) (i) While studying the periodic properties, Arti came across an abnormal behaviour in the atomic size of Hf. She found that, even though Hf is placed below Zr in the same group, both have almost similar atomic sizes.
 - (I) Which phenomenon is responsible for the above behaviour? Define it.
 - (II) Mention any other consequence of the above phenomenon.
 - (ii) Give reasons for the following:
 - (I) Transition metals exhibit catalytic properties.
 - (II) Transition metals have high enthalpy of atomisation.
 - (III) Sc is a transition element, while Zn is not.

2

- 33. (क) (i) किसी गैल्वेनी सेल के लिए, निम्नलिखित अर्ध अभिक्रियाएँ दी गई हैं। निर्णय लीजिए कि कौन-सी, अपचयन अभिक्रिया रहेगी और किसका प्रतिलोमन होकर ऑक्सीकरण अभिक्रिया होगी। अपने उत्तर के लिए कारण दीजिए।
 - (I) $Cr^{3+} + 3e^{-} \rightarrow Cr(s); E^{\circ} = -0.74 \text{ V}$
 - (II) $Fe^{2+} + 2e^{-} \rightarrow Fe(s); E^{\circ} = -0.44 \text{ V}$
 - (ii) उस सेल को निरूपित कीजिए जिसमें निम्निलिखित अभिक्रिया होती है : $Mg(s) + 2Ag^+ \ (0\cdot 001\ M) \to Mg^{2+} \ (0\cdot 100\ M) + 2Ag(s)$ यदि $E^0_{\mbox{\scriptsize kem}} = 3\cdot 17\ \mbox{\scriptsize V}$ है, तो $E_{\mbox{\scriptsize kem}}$ का परिकलन कीजिए। $(\log\ 10=1)$

2

3

2

3

अथवा

- (ख) (i) कोलराउश नियम बताइए। इसके कोई दो अनुप्रयोग दीजिए।
 - (ii) $\wedge_{\mathrm{m}}^{\circ} \mathrm{NH_4Cl}$, $\wedge_{\mathrm{m}}^{\circ} \mathrm{NaOH}$ और $\wedge_{\mathrm{m}}^{\circ} \mathrm{NaCl}$ क्रमश: 129·8, 217·4 और $108\cdot9~\mathrm{S}~\mathrm{cm}^2~\mathrm{mol}^{-1}~$ हैं । $1\times10^{-2}~\mathrm{M}$, $\mathrm{NH_4OH}$ विलयन की मोलर चालकता $9\cdot33~\mathrm{S}~\mathrm{cm}^2~\mathrm{mol}^{-1}$ है । इस सांद्रता पर $\mathrm{NH_4OH}$ विलयन की वियोजन मात्रा (α) परिकलित कीजिए।

33. (a) (i) For a galvanic cell, the following half reactions are given.

Decide, which will remain as reduction reaction and which will be reversed to become an oxidation reaction. Give reason for your answer.

2

(I) $Cr^{3+} + 3e^{-} \rightarrow Cr(s); E^{\circ} = -0.74 \text{ V}$

(II) $Fe^{2+} + 2e^{-} \rightarrow Fe(s)$; $E^{\circ} = -0.44 \text{ V}$

(ii) Represent the cell in which the following reaction takes place:

3

$$\begin{split} Mg(s) + 2Ag^+ & (0\cdot001~M) \rightarrow Mg^{2+} & (0\cdot100~M) + 2Ag(s) \\ Calculate & E_{cell} ~if ~E_{cell}^{\circ} = 3\cdot17~V. ~(log~10=1) \end{split}$$

OR

(b) State Kohlrausch's law. Give any two applications of it.

2

(ii) $\mbox{$\wedge^{\circ}_{m}$ NH$_{4}Cl, \wedge°_{m} NaOH and \wedge°_{m} NaCl are 129.8, 217.4, and <math>108.9 \mbox{ S cm}^{2}\mbox{ mol}^{-1}$ respectively. Molar conductivity of $1\times 10^{-2}\mbox{ M}$ solution of $\mbox{NH}_{4}\mbox{OH}$ is $9.33\mbox{ S cm}^{2}\mbox{ mol}^{-1}$. Calculate the degree of dissociation (\$\alpha\$) of $\mbox{NH}_{4}\mbox{OH}$ solution at this concentration.