


Series: WYXZ5

**SET~3** 

प्रश्न-पत्र कोड Q.P. Code 56/5/3



परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Q.P. Code on the title page of the answer-book.

- (I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
  Please check that this question paper contains 23 printed pages.
- (II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
  - Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं।
  Please check that this question paper contains 33 questions.
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the Serial Number of the question in the answer-book at the given place before attempting it.

- (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
  15 minute time has been allotted to read this question paper. The
  - question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.



रसायन विज्ञान (सेद्धान्तिक) CHEMISTRY (Theory)



निर्धारित समय : 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : 70

Maximum Marks: 70

56/5/3

P.T.O.

# सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न है। सभी प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ,** एवं **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) खण्ड ख प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है।
- (v) **खण्ड ग** प्रश्न संख्या **22** से **28** तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **3** अंकों का है।
- (vi) खण्ड घ प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) 'खण्ड डः प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग वर्जित है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$ 

- 1.  $CH_3CH_2CHO$  और  $CH_3CH_2COOH$  के मध्य किसके द्वारा विभेद किया जा सकता है ?
  - (A) सोडियम बाइकार्बोनेट परीक्षण
  - (B) हिन्सबर्ग परीक्षण
  - (C) आयोडोफॉर्म परीक्षण
  - (D) ल्यूकास परीक्षण
- 2. रसायन प्रयोगशाला में गुणात्मक विश्लेषण करते समय अभिषेक ने एक परखनली में पीले रंग का पोटैशियम क्रोमेट विलयन डाला। वह यह देखकर अचिम्भित हो गया कि विलयन का रंग तुरंत नारंगी रंग में बदल गया। उसे यह अनुभूति हुई कि परखनली साफ नहीं थी अपितु उसमें किसी अन्य द्रव की कुछ बूँदें थीं। निम्नलिखित पदार्थों में से परखनली में पोटैशियम क्रोमेट विलयन डालने से पहले कौन-सा सर्वाधिक संभावित द्रव उपस्थित था?
  - (A) सोडियम हाइड्रोजन कार्बोनेट विलयन
  - (B) मेथिल ऑरेंज विलयन
  - (C) सोडियम हाइड्रॉक्साइड विलयन
  - (D) HCl विलयन



## General Instructions:

Read the following instructions carefully and follow them:

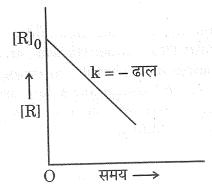
- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into five sections Section A, B, C, D and E.
- (iii) **Section A** questions number **1** to **16** are multiple choice type questions. Each question carries **1** mark.
- (iv) **Section B** questions number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) **Section D** questions number 29 and 30 are case-based questions. Each question carries 4 marks.
- (vii) Section E questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **not** allowed.

#### SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each.  $16 \times 1=16$ 

- 1. CH<sub>3</sub>CH<sub>2</sub>CHO and CH<sub>3</sub>CH<sub>2</sub>COOH can be distinguished by:
  - (A) Sodium bicarbonate test
  - (B) Hinsberg test
  - (C) Iodoform test
  - (D) Lucas test
- 2. While doing qualitative analysis in chemistry lab, Abhishek added yellow coloured potassium chromate solution into a test tube. He was surprised to see the colour of the solution changing immediately to orange. He realised that the test tube was not clean and contained a few drops of some liquid. Which of the following substances will be the most likely liquid to be present in the test tube before adding potassium chromate solution?
  - (A) Sodium hydrogen carbonate solution
  - (B) Methyl orange solution
  - (C) Sodium hydroxide solution
  - (D) HCl solution

P.T.O.


- **3.** उत्प्रेरक परिवर्तित करते हैं :
  - (A) साम्यावस्था स्थिरांक
  - (B) अभिक्रिया की एन्थैल्पी
  - (C) अभिक्रिया की गिब्ज़ ऊर्जा
  - (D) अभिक्रिया की सक्रियण ऊर्जा
- 4. निम्नलिखित अणुओं में से किसकी प्रकृति किरेल है ?
  - (A) 1-क्लोरोप्रोपेन

(B) 2-क्लोरोप्रोपेन

(C) 1-क्लोरोब्यूटेन

(D) 2-क्लोरोब्यूटेन

- 5.  $CH_3CH_2OH$  को  $CH_3CHO$  में परिवर्तित किया जा सकता है :
  - (A) उत्प्रेरकीय हाइड्रोजनन द्वारा
  - (B) LiAlH<sub>4</sub> के साथ अभिक्रियित करके
  - (C) PCC के साथ अभिक्रियित करके
  - (D)  $KMnO_4$  के साथ अभिक्रियित करके
- 6.  $CH_3 CH_2 N(CH_3) CH_2 CH_2 CH_3$  का IUPAC नाम है :
  - (A) N-मेथिलपेन्टेन-2-ऐमीन
  - (B) N-एथिल-N-मेथिलप्रोपेन-1-ऐमीन
  - (C) N,N-डाइएथिलप्रोपेन-1-ऐमीन
  - (D) N,N-डाइमेथिलप्रोपेन-1-ऐमीन
- 7. अभिकारक की सांद्रता [R] और समय 't' के मध्य आलेख नीचे दर्शाया गया है। यह आलेख दी गई अभिक्रिया की कोटि में से किसको इंगित करता है ?

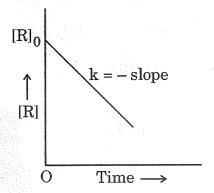


- (A) तृतीय कोटि
- (C) प्रथम कोटि

- (B) द्वितीय कोटि
- (D) शून्य कोटि

56/5/3

#4#




- **3.** The role of a catalyst is to change:
  - (A) equilibrium constant
  - (B) enthalpy of reaction
  - (C) Gibbs energy of reaction
  - (D) activation energy of reaction
- 4. Which of the following molecules is chiral in nature?
  - (A) 1-chloropropane

(B) 2-chloropropane

(C) 1-chlorobutane

- (D) 2-chlorobutane
- **5.**  $CH_3CH_2OH$  can be converted to  $CH_3CHO$  by :
  - (A) catalytic hydrogenation
  - (B) treatment with LiAlH<sub>4</sub>
  - (C) treatment with PCC
  - (D) treatment with KMnO<sub>4</sub>
- **6.** The IUPAC name for  $CH_3 CH_2 N(CH_3) CH_2 CH_2 CH_3$  is:
  - (A) N-methylpentan-2-amine
  - (B) N-ethyl-N-methylpropan-1-amine
  - (C) N,N-diethylpropan-1-amine
  - (D) N,N-dimethylpropan-1-amine
- 7. A plot between concentration of reactant [R] and time 't' is shown below. Which of the given order of reaction is indicated by the graph?



(A) Third order

(B) Second order

(C) First order

(D) Zero order

8. एथिल ब्रोमाइड, ऐल्कोहॉली सिल्वर नाइट्राइट के साथ अभिक्रिया करके देता है :

- (A) एथिल नाइट्राइट
- (B) नाइट्रोएथेन
- (C) नाइट्रोंमेथेन
- (D) एथीन

9. निम्नलिखित जलीय विलयनों में से किसका हिमांक उच्चतम होगा ?

- (A) 1.0 M KCl
- (B)  $1.0 \text{ M Na}_2\text{SO}_4$
- (C) 1·0 M ग्लूकोस
- (D) 1.0 M AlCl<sub>3</sub>

10. निम्नलिखित में से कौन-सा ऐल्डिहाइड कैनिज़ारो अभिक्रिया देगा ?

- $\begin{array}{cc} \text{(A)} & \text{CH}_3 \text{CH} \text{CHO} \\ & | \\ & \text{CH}_3 \end{array}$
- (B)  $(CH_3)_3C$  CHO
- (C)  $CH_3 CH_2 CHO$
- $\begin{array}{ccc} \text{(D)} & \text{CH}_3 \text{CH} \text{CH} \text{CHO} \\ & & | & | \\ & \text{CH}_3 & \text{CH}_3 \end{array}$

11. निम्नलिखित समूहों में से किसके दोनों आयन जलीय विलयन में रंगीन हैं?

I.  $Cu^+$  II.  $Ti^{4+}$  III.  $Co^{2+}$  IV.  $Fe^{2+}$  [परमाणु क्रमांक : Cu=29, Ti=22, Co=27, Fe=26]

(A) I और II

(B) II और III

(C) III और IV

(D) I और IV

| 8.  | The t    | reatment of ethyl bromi               | de with alcoh                           | olic silver | nitrite gives :    |         |
|-----|----------|---------------------------------------|-----------------------------------------|-------------|--------------------|---------|
|     | (A)      | ethyl nitrite                         |                                         |             |                    |         |
|     | (B)      | nitroethane                           | garan ya Marini<br>Marini ya Marini     |             |                    |         |
|     | (C)      | nitromethane                          |                                         |             | in the second      |         |
|     | (D)      | ethene                                |                                         |             |                    |         |
| 9.  | Whic     | ch of the following aque              | ous solutions                           | will have   | e the highest from | eezing  |
|     | (A)      | 1.0 M KCl                             | 1 (2) Ar<br>2, 177<br>3 (4) (4) (4) (4) |             |                    |         |
|     | (B)      | $1.0~\mathrm{M~Na_2SO_4}$             |                                         |             |                    |         |
|     | (C)      |                                       |                                         |             |                    | 4.7<br> |
|     | (D)      | 1·0 M AlCl <sub>3</sub>               |                                         |             |                    |         |
| 10. | Whi      | ch of the following aldeh             | ydes will und                           | ergo Canr   | nizzaro reaction   | ?       |
|     | (A)      | $CH_3 - CH - CHO$                     |                                         |             |                    |         |
|     | -# 1 - T | CH <sub>3</sub>                       |                                         |             |                    |         |
|     | (B)      | (CH <sub>3</sub> ) <sub>3</sub> C CHO |                                         |             |                    |         |
|     | (C)      | $CH_3 - CH_2 - CHO$                   |                                         |             |                    |         |
|     | (D)      | CH <sub>3</sub> – CH – CH – CH        |                                         |             |                    |         |
| 11. |          | which of the following tion?          |                                         |             |                    | queous  |
|     | I.       | Cu <sup>+</sup> II. Ti <sup>4+</sup>  | III. C                                  | $0^{2+}$    | IV. $Fe^{2+}$      |         |
|     | [Ato     | mic number : Cu = 29,                 | Ti = 22, Co =                           | = 27, Fe    | = 26]              |         |
|     | (A)      | I and II                              | (B)                                     | II and      | l III              |         |
|     | (C)      | III and IV                            | (D)                                     | ) I and     | IV                 |         |

56/5/3

P.T.O.

12. स्तंभ I में दिए गए सेल के प्रकार को स्तंभ II में दिए गए उनके उपयोग से मिलान कीजिए :

| स्तंभ II                    |
|-----------------------------|
| a. दीवार घड़ी               |
| b. अपोलो अंतरिक्ष कार्यक्रम |
| c. कलाई घड़ी                |
| d. इनवर्टर                  |
|                             |

(A) i-a, ii-b, iii-c, iv-d

(B) i-d, ii-c, iii-a, iv-b

(C) i-c, ii-d, iii-b, iv-a

(D) i-b, ii-a, iii-d, iv-c

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- 13. अभिकथन (A) : जैसे-जैसे ऐल्किल समूह का आकार बढ़ता है, ऐल्डिहाइडों और कीटोनों की जल में घुलनशीलता घटती जाती है।
  - कारण (R) : ऐल्डिहाइडों और कीटोनों में द्विध्रुव-द्विध्रुव अन्योन्यक्रियाएँ होती हैं।
- 14. अभिकथन (A): ऐल्किल हैलाइडों के क्वथनांकों के घटने का क्रम RI > RBr > RCl > RF है। alternative all <math>RI > RBr > RCl > RF है। alternative all <math>RI > RBr > RCl > RF है।
- **15.** अभिकथन (A): आयनिक विलयन के प्रतिरोध को मापने के लिए AC स्रोत का उपयोग किया जाता है।
  - कारण (R): यदि DC स्रोत का उपयोग किया जाता है तो आयिनक विलयन की सांद्रता बदल जाएगी।
- **16.** अभिकथन (A): ताप में वृद्धि के साथ हेनरी नियम स्थिरांक  $(K_H)$  घटता है। कारण (R): जैसे-जैसे ताप बढ़ता है, द्रवों में गैसों की विलेयता घटती है।



12. Match the type of cell given in Column I with their use given in Column II.

| ſ |      | Column~I          | Li. | Column II              |
|---|------|-------------------|-----|------------------------|
|   | i.   | Lead storage cell | a.  | Wall clock             |
|   | ii.  | Mercury cell      | b.  | Apollo Space Programme |
|   | iii. | Dry cell          | c.  | Wrist watch            |
|   | iv.  | Fuel cell         | d.  | Inverter               |

- (A) i-a, ii-b, iii-c, iv-d
- (B) i-d, ii-c, iii-a, iv-b
- (C) i-c, ii-d, iii-b, iv-a
- (D) i-b, ii-a, iii-d, iv-c

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- **13.** Assertion (A): The solubility of aldehydes and ketones in water decreases with increase in size of the alkyl group.
  - Reason (R): Aldehydes and ketones have dipole-dipole interaction.
- 14. Assertion (A): The boiling points of alkyl halides decrease in the order RI > RBr > RCl > RF.
  - Reason (R): The van der Waals forces of attraction decrease in the order RI > RBr > RCl > RF.
- **15.** Assertion (A): For measuring resistance of an ionic solution an AC source is used.
  - Reason (R): Concentration of ionic solution will change if DC source is used.
- 16. Assertion (A): Henry's law constant  $(K_H)$  decreases with increase in temperature.
  - Reason (R): As the temperature increases, solubility of gases in liquids decreases.

#### खण्ड ख

17. (क)  $CaCl_2$  (मोलर द्रव्यमान =  $111~g~mol^{-1}$ ) के 3~g को 260~g जल में घोलने पर बनने वाले विलयन के क्वथनांक का उन्नयन, यह मानते हुए कि  $CaCl_2$  पूर्णतया वियोजित हो गया है, परिकलित कीजिए। (जल के लिए  $K_b=0.52~K~kg~mol^{-1}$ )

### अथवा

(ख) 'X' और 'Y' द्रव आदर्श विलयन बनाते हैं। शुद्ध 'X' और शुद्ध 'Y' के वाष्प दाब क्रमश: 120 mm Hg और 160 mm Hg हैं। 'X' और 'Y' के समान मोलों को मिलाकर बनने वाले विलयन का वाष्प दाब परिकलित कीजिए। 2

2

1

1

2

1

 $S cm^2 mol^{-1}$  में 298·15 K $S cm^{-1} \stackrel{\rightarrow}{\mathcal{H}} 298 \cdot 15 K$ 18. mol/L में KCl विलयन पर मोलर चालकता पर चालकता की सांद्रता 111.30.11131.000 129.0 0.01290.100141.0 0.001410.010

ऊपर दिए गए आँकड़ों के आधार पर, सांद्रता के साथ चालकता और मोलर चालकता में परिवर्तन के लिए संभावित कारण दीजिए।

19. (क) अभिक्रिया की कोटि और आण्विकता के मध्य कोई दो अंतर दीजिए।

(ख) अभिक्रिया X + Y → Z, जिसमें X और Y दोनों प्रथम कोटि बलगतिकी का अनुसरण करते हैं; यदि X की सांद्रता दुगुनी और Y की सांद्रता तीन गुनी कर दी जाए, तो अभिक्रिया वेग पर क्या प्रभाव पड़ेगा ?

- **20.**  $443~{
  m K}$  पर सांद्र  ${
  m H_2SO_4}$  के साथ ऐथिल ऐल्कोहॉल के निर्जलन की क्रियाविधि लिखिए।
- 21. (क) फ़ीनॉल की तुलना में कार्बोक्सिलिक अम्ल अधिक अम्लीय होता है। कारण दीजिए।
  - (ख) बेन्ज़ैल्डिहाइड और ऐसीटोफ़ीनोन में विभेद करने के लिए एक रासायनिक परीक्षण दीजिए।

## SECTION B

17. (a) Calculate the elevation of boiling point of a solution when 3 g of  $CaCl_2$  (Molar mass = 111 g mol<sup>-1</sup>) was dissolved in 260 g of water, assuming that  $CaCl_2$  undergoes complete dissociation. (K<sub>b</sub> for water = 0.52 K kg mol<sup>-1</sup>)

OR

(b) Liquids 'X' and 'Y' form an ideal solution. The vapour pressure of pure 'X' and pure 'Y' are 120 mm Hg and 160 mm Hg respectively. Calculate the vapour pressure of the solution containing equal moles of 'X' and 'Y'.

2

2

| 18. | Concentration of KCl solution in mol/L | Conductivity at 298·15 K in S cm <sup>-1</sup> | Molar Conductivity at 298·15 K in S cm <sup>2</sup> mol <sup>-1</sup> |  |
|-----|----------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|--|
|     | 1.000                                  | 0.1113                                         | 111.3                                                                 |  |
|     | 0.100                                  | 0.0129                                         | 129.0                                                                 |  |
|     | 0.010                                  | 0.00141                                        | 141.0                                                                 |  |

Based on the data given above, give plausible reason for the variation of conductivity and molar conductivity with concentration.

2

19. (a) Give any two differences between order and molecularity of a reaction.

1

(b) For a reaction  $X + Y \rightarrow Z$ , in which both X and Y follow first order kinetics; if the concentration of X is increased 2 times and concentration of Y is increased 3 times, how does it affect the rate of reaction?

1

**20.** Write the mechanism of dehydration of ethyl alcohol with conc.  $H_2SO_4$  at 443 K.

2

21. (a) Carboxylic acid is more acidic than phenol. Give reason.

1

(b) Give a chemical test to distinguish between benzaldehyde and acetophenone.

1

56/5/3

# 11 #

P.T.O.

# खण्ड ग

- **22.** (क) श्वेता ने दो द्रवों A और B के प्रत्येक के 10~mL को परस्पर मिलाया । मिलाने पर विलयन का आयतन  $20\cdot 2~mL$  पाया गया ।
  - (i) द्रवों को मिलाने पर आयतन में परिवर्तन क्यों हुआ ?
  - (ii) मिलाने पर ताप बढ़ेगा या घटेगा ?
  - (iii) इस प्रकार के विलयन का एक उदाहरण दीजिए।

#### अथवा

- (ख) (i) पहाड़ी इलाकों में बर्फ से ढकी सड़कों को साफ करने में नमक छिड़कने से किस तरह मदद मिलती है ?
  - (ii) क्या होता है जब लाल रुधिर कोशिकाओं को 0·5% (द्रव्यमान/आयतन) सोडियम क्लोराइड विलयन में रखा जाता है ? अपने उत्तर का औचित्य दीजिए।
  - (iii) प्रतिलोम परासरण का एक अनुप्रयोग लिखिए।
- **23.** अभिक्रिया  $A+B \to 3$ तपाद के लिए, अभिकारकों की विभिन्न प्रारंभिक सांद्रताओं के लिए निम्नलिखित प्रारंभिक वेग प्राप्त हुए :

| क्रमांक | $[A]/mol\ L^{-1}$ | $[B]/mol\ L^{-1}$ | प्रारंभिक वेग/ $mol\ L^{-1}\ s^{-1}$ |
|---------|-------------------|-------------------|--------------------------------------|
| 1       | 0.1               | 0.1               | 0.05                                 |
| 2       | 0.2               | 0.1               | 0.10                                 |
| 3       | 0.1               | 0.2               | 0.05                                 |

A और B के सापेक्ष अभिक्रिया की कोटि और अभिक्रिया की समग्र कोटि ज्ञात कीजिए।

#12#

# SECTION C

- 22. (a) Shweta mixed two liquids A and B of 10 mL each. After mixing, the volume of the solution was found to be 20·2 mL.
  - (i) Why was there a volume change after mixing the liquids?
  - (ii) Will there be an increase or decrease of temperature after mixing?
  - (iii) Give one example for this type of solution.

OR

- (b) (i) How does sprinkling of salt help in clearing the snow covered roads in hilly areas?
  - (ii) What happens when red blood cells are kept in 0.5% (mass/vol) NaCl solution? Justify your answer.
  - (iii) Write an application of reverse osmosis.
- **23.** For the reaction  $A + B \rightarrow Products$ , the following initial rates were obtained at various initial concentrations of reactants :

| Sl. No. | $[A]/mol\ L^{-1}$ | $[B]/mol\ L^{-1}$      | Initial rate/mol $L^{-1} s^{-1}$ |
|---------|-------------------|------------------------|----------------------------------|
| 1       | 0.1               | 0.1                    | 0.05                             |
| 2       | 0.2               | <b>0.1</b> , 18 (2007) | 0.10                             |
| 3       | 0.1               | 0.2                    | 0.05                             |

Determine the order of the reaction with respect to A and B and overall order of the reaction.

3

1

1

1

1

1

1

| 24. | (ক)               | षट्दंतुर लिगन्ड का नाम और संरचना दीजिए।                                                                                                | 1 |
|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|---|
|     | (ख)               | $[\mathrm{Ni(CN)_4}]^{2-}$ वर्ग समतलीय है जबिक $[\mathrm{Ni(CO)_4}]$ चतुष्फलकीय है। क्यों ? $[$ परमाणु क्रमांक : $\mathrm{Ni}$ = $28]$ | 2 |
| 25. | निम्नि            | नखित के लिए कारण दीजिए :                                                                                                               | • |
| ,   | (क)               | नाभिकरागी प्रतिस्थापन अभिक्रियाओं के प्रति हैलोऐरीन कम अभिक्रियाशील होते हैं।                                                          | 1 |
|     | (ख)               | ऑर्थो और मेटा समावयवयों की तुलना में $p$ -डाइक्लोरोबेन्ज़ीन का गलनांक उच्चतर होता है।                                                  | 1 |
|     | ( <del>1</del> 1) | $\mathrm{S_{N}}2$ अभिक्रिया के प्रति तृतीयक ऐल्किल हैलाइड अल्पतम अभिक्रियाशील होते हैं।                                                | 1 |
|     |                   |                                                                                                                                        |   |
| 26. | (ক)<br>(ख)        | निम्नलिखित के लिए रासायनिक समीकरण लिखिए :  (i) क्यूमीन से फ़ीनॉल का विरचन  (ii) ऐनिसोल का नाइट्रोकरण  निम्नलिखित को पूर्ण कीजिए :      | 2 |
|     | (ಆ)               | $(CH_3)_3 C - O - CH_3 + HI \rightarrow$                                                                                               |   |
| 27. | निम्न             | लेखित अभिक्रियाओं में निर्मित उत्पाद लिखिए :                                                                                           |   |
|     | (क)               | $\mathrm{CH_{3}CHO} + \mathrm{NH_{2}CONHNH_{2}} \rightarrow$                                                                           | 1 |
|     | (ख)               | $	ext{CH}_3	ext{CHO} \stackrel{	ext{d-J NaOH}}{\longrightarrow}$                                                                       | 1 |
|     | (ग)               | $\mathrm{CH_3COOH} \xrightarrow{\mathrm{Cl_2}/$ लाल P $\mathrm{H_2O}$                                                                  | 1 |
|     |                   |                                                                                                                                        | 1 |
| 28. | (क)               | रक्त के थक्का जमने के लिए उत्तरदायी विटामिन का नाम लिखिए।                                                                              |   |
|     | (ख)               | प्रोटीन के विकृतीकरण से क्या अभिप्राय है ? एक उदाहरण दीजिए।                                                                            | 2 |

24. Write the name and structure of a hexadentate ligand. (a) Why is  $[Ni(CN)_4]^{2-}$  square planar while  $[Ni(CO)_4]$  is tetrahedral? (b) 2 [Atomic number : Ni = 28] 25. Account for the following: Haloarenes are less reactive towards nucleophilic substitution (a) reactions. 1 (b) p-dichlorobenzene has higher melting point than ortho and meta isomers. 1 Tertiary alkyl halides are least reactive towards  $S_{N}2$  reaction. (c) 1 26. Write the chemical equation for the following: (a) 2 (i) Preparation of phenol from cumene (ii) Nitration of anisole (b) Complete the following: 1  $(\mathrm{CH_3})_3\;\mathrm{C} - \mathrm{O} - \mathrm{CH_3} + \mathrm{HI} \rightarrow$ 27. Write the products formed in the following reactions: (a)  $CH_3CHO + NH_2CONHNH_2 \rightarrow$ 1  $\text{CH}_3\text{CHO} \xrightarrow{\text{dil. NaOH}}$ (b) 1  $CH_3COOH \xrightarrow{Cl_2/red P} \xrightarrow{H_2O}$ 28. (a) Name the vitamin which is responsible for coagulation of blood. 1 What is meant by denaturation of protein? Give an example. (b) 2

#### खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

29. कार्बोहाइड्रेट पॉलिहाइड्रॉक्सी ऐल्डिहाइड अथवा कीटोन हैं जो बहुत अधिक संरचनात्मक विविधताओं को निरूपित करतें हैं जिसका कारण है दिक्-स्थान में परमाणुओं की विभिन्न व्यवस्था, फलस्वरूप उनके सैकड़ों त्रिविम समावयवी बन जाते हैं। यद्यपि अधिकतर त्रिविम समावयवों के रासायिनक गुणधर्म ज्यादा भिन्न नहीं होते, लेकिन उनकी उपापचय की दर और जैविक प्रणालियों में उपयोग महत्त्वपूर्ण रूप से भिन्न होता है तथा वह कार्बोहाइड्रेटों के समग्र उपापचय को प्रभावित करता है। संरचनात्मक रूपभेद, जो त्रिविम आकाश में परमाणुओं की भिन्न व्यवस्था के कारण उत्पन्न होते हैं, त्रिविम समावयव कहलाते हैं। त्रिविम समावयवों की संख्या का अनुमान सैद्धांतिक रूप से 2n सूत्र का उपयोग करके लगाया जा सकता है जहाँ 'n' अणु में उपस्थित त्रिविम केन्द्र अथवा असमित (किरेल) कार्बन परमाणुओं की संख्या है। इन त्रिविम समावयवों में से कुछ संरचनाएँ, जो एक-दूसरे की दर्पण प्रतिबिंब होती हैं, प्रतिबिंब रूप (एनैन्टिओमर) कहलाती हैं।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

(क) ग्लूकोस में ऐल्डिहाइड समूह और ऋजु श्रृंखला की उपस्थिति दर्शाने के लिए रासायनिक अभिक्रियाएँ दीजिए।

1

(ख) (i) ऐनोमर को परिभाषित कीजिए।

#### अथवा

- (ख) (ii) β-D-ग्लूकोपाइरैनोस की संरचना बनाइए।
- (ग) सूक्रोस को अपवृत (प्रतीप) शर्करा कहा जाता है। समझाइए।
- 30. 1893 में वर्नर का उपसहसंयोजन सिद्धांत, उपसहसंयोजन संकुलों में आबंधों की व्याख्या करने के लिए पहला प्रयास था। यह स्मरणीय है कि 1897 में जे.जे. थॉमसन द्वारा इलेक्ट्रॉन की खोज तथा संयोजकता के इलेक्ट्रॉनिक सिद्धांत से पहले ही यह सिद्धांत प्रतिपादित किया गया था। वर्नर के पास कोई भी आधुनिक उपकरणी तकनीक नहीं थी और उसके सभी अध्ययन सामान्य प्रायोगिक तकनीकों द्वारा किए गए थे। वर्नर संकुलों में आबंधन की प्रकृति की व्याख्या करने में समर्थ हुआ और उसने निष्कर्ष निकाला कि संकुलों में धातु दो भिन्न प्रकार की संयोजकताएँ प्रदर्शित करती हैं: प्राथमिक और द्वितीयक। प्राथमिक संयोजकताएँ सामान्य रूप से आयननीय होती हैं जबिक द्वितीयक संयोजकताएँ अन-आयननीय होती हैं।

# 16 #

# SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

29. Carbohydrates are polyhydroxy aldehydes or ketones that represent enormous structural diversity in terms of the arrangement of atoms in space, resulting in hundreds of stereoisomers. Although the chemical properties of most stereoisomers may not be very different, their metabolic rate and utilization in biological systems is significantly different and known to influence the overall carbohydrate metabolism. Structural variants, which arise due to a different arrangement of atoms in three-dimensional space are known as stereoisomers. The number of stereoisomers can be theoretically estimated by using the formula 2n, where 'n' is the number of stereocenters or asymmetric (chiral) carbon atoms in a molecule. Out of these stereoisomers, there are some structures, which are mirror images of each other, and they are referred to as enantiomers.

Answer the following questions:

(a) Give chemical reactions to show the presence of an aldehydic group and straight chain in glucose.

1

2

(b) (i) Define anomers.

OR

'(b) (ii) Draw the structure of β-D-Glucopyranose.

1

(c) Sucrose is known as invert sugar. Explain.

1

30. Werner's coordination theory in 1893 was the first attempt to explain the bonding in coordination complexes. It must be remembered that this theory was put forward before the electron had been discovered by J.J. Thomson in 1897, and before the electronic theory of valency. Werner did not have any of the modern instrumental techniques and all his studies were made using simple experimental techniques. Werner was able to explain the nature of bonding in complexes and he concluded that in complexes, the metal shows two different sorts of valency: primary and secondary. Primary valences are normally ionisable whereas secondary valences are non ionisable.

|     | निम्नलिखित प्रश                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | मों के उत्तर दीजिए : 📉 📧 🕾 अध्यक्षित्रकार 💮 💮 💮 💮 💮 💮                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | (क) एक मो                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ल $\mathrm{CrCl}_3$ . $4\mathrm{H}_2\mathrm{O}$ , $\mathrm{AgNO}_3$ विलयन के आधिक्य के साथ अभिक्रियित किए जाने                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|     | द्वितीय                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 |
|     | (ख) द्वि-लव                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ाण और संकुल में क्या अंतर है ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |
| •   | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | निम्नलिखित संकुलों को उनके विलयन में चालकता के बढ़ते हुए क्रम में व्यवस्थित<br>कीजिए:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |
| ,   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $[\operatorname{Cr}(\operatorname{NH}_3)_3\operatorname{Cl}_3],  [\operatorname{Cr}(\operatorname{NH}_3)_6]\operatorname{Cl}_3,  [\operatorname{Cr}(\operatorname{NH}_3)_5\operatorname{Cl}]\operatorname{Cl}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | र्वे के अंधिक के अधिकार के अधि<br>इसके के अधिकार के अध                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|     | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | उपसहसंयोजन यौगिकों की प्राथमिक और द्वितीयक संयोजकताओं के बीच दो अंतर<br>लिखिए।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |
|     | Company of the Compan | AND STREET TO BE TO SEE THE STREET OF THE ST |   |
| 31. | (क) (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | जब पायरोलुसाइट अयस्क को वायु की उपस्थिति में KOH के साथ संगलित किया                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 91. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | जाता है तो गाढ़े हरे रंग का उत्पाद 'A' प्राप्त होता है जो अम्लीय माध्यम में बैंगनी रंग                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | के यौगिक 'B' में परिवर्तित हो जाता है।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (I) 'A' और 'B' के सूत्र लिखिए।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $({ m II})$ यौगिक 'B' की अम्लीय माध्यम में ${ m Fe}^{2+}$ के साथ अभिक्रिया का आयनिक                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | समीकरण लिखिए।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 |
|     | (ii),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ्र <b>कारण दीजिए :</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 |
|     | angig jawas A<br>Loginganyaga<br>Loginganyaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(1)$ जलीय विलयन में $\mathrm{Ce}^{4+}$ एक अच्छा ऑक्सीकारक है।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (II)      लैंथेनॉयड आकुंचन की तुलना में एक तत्त्व से दूसरे तत्त्व के बीच ऐक्टिनॉयड<br>आकंचन अधिक होता है।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ${ m (III)}$ ${ m E}_{ m Zn}^{\circ}{}^{2+}/{ m Zn}$ का मान अपेक्षा से अधिक ऋणात्मक है, जबिक                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathrm{E^{\circ}_{Cu^{2+}/Cu}}$ धनात्मक है।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |

2

3

अथवा

| The second second | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Answer th | e following questions :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | differential to the development of the state |
|                   |           | mole of CrCl <sub>3</sub> .4H <sub>2</sub> O precipitates one mole of AgCl when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | treat     | ted with excess of AgNO <sub>3</sub> solution. Write (i) the structural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | form      | ula of the complex, and (ii) the secondary valency of Cr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | (b) Wha   | t is the difference between a complex and a double salt?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | (c) (i)   | Arrange the following complexes in the increasing order of conductivity of their solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | ,         | $[\operatorname{Cr}(\operatorname{NH}_3)_3\operatorname{Cl}_3],  [\operatorname{Cr}(\operatorname{NH}_3)_6]\operatorname{Cl}_3,  [\operatorname{Cr}(\operatorname{NH}_3)_5\operatorname{Cl}]\operatorname{Cl}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |           | OR CONTROL OF THE CON |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | (c) (ii)  | Write two differences between primary and secondary valences in coordination compounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |           | SECTION E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31.               | (a) (i)   | When pyrolusite ore is fused with KOH, in presence of air, a dark green coloured product 'A' is obtained which changes to purple coloured compound 'B' in acidic medium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |           | (I) Write the formulae of 'A' and 'B'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |           | (II) Write the ionic equation for the reaction when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |           | compound 'B' reacts with $Fe^{2+}$ in acidic medium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | (ii)      | Give reasons:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |           | (I) Ce <sup>4+</sup> in aqueous solution is a good oxidising agent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |           | (II) The actinoid contraction is greater from element to element than lanthanoid contraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |           | (III) $E_{Zn^{2+}/Zn}^{\circ}$ value is more negative than expected,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |           | whereas $E^{\circ}_{Cu^{2+}/Cu}$ is positive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

OR

- (ख) (i) आवर्ती गुणधर्मों का अध्ययन करते समय, आरती ने Hf के परमाणु आकार में एक असामान्य व्यवहार देखा। उसने पाया कि यद्यपि Hf उसी समूह में Zr के ठीक नीचे है, फिर भी उनके परमाणु आकार लगभग समान हैं।
  - अपर दिए गए व्यवहार के लिए कौन-सी पिरघटना उत्तरदायी है ? उसकी
     पिरभाषा लिखिए।

2

2

- (II) उपर्युक्त परिघटना के किसी अन्य परिणाम का उल्लेख कीजिए।
- (ii) निम्नलिखित के लिए कारण दीजिए :
  - (I) संक्रमण धातुएँ उत्प्रेरकीय गुणधर्म दर्शाती हैं।
  - (II) संक्रमण धातुओं की कणन एन्थैल्पी उच्च होती है।
  - (III) Sc एक संक्रमण तत्त्व है, जबिक Zn नहीं।
- 32. (क) (i) किसी गैल्वेनी सेल के लिए, निम्नलिखित अर्ध अभिक्रियाएँ दी गई हैं। निर्णय लीजिए कि कौन-सी, अपचयन अभिक्रिया रहेगी और किसका प्रतिलोमन होकर ऑक्सीकरण अभिक्रिया होगी। अपने उत्तर के लिए कारण दीजिए।
  - (I)  $Cr^{3+} + 3e^{-} \rightarrow Cr(s)$ ;  $E^{\circ} = -0.74 \text{ V}$
  - (II)  $Fe^{2+} + 2e^{-} \rightarrow Fe(s)$ ;  $E^{\circ} = -0.44 \text{ V}$
  - $\begin{array}{ll} \hbox{(ii)} & \mbox{उस सेल को निरूपित कीजिए जिसमें निम्निलिखित अभिक्रिया होती है :} \\ & \mbox{Mg(s)} + 2\mbox{Ag}^+ \, (0 \cdot 001 \ \mbox{M}) \rightarrow \mbox{Mg}^{2+} \, (0 \cdot 100 \ \mbox{M}) + 2\mbox{Ag(s)} \\ & \mbox{यदि } E^o_{\mbox{$\dot{e}$}} = 3 \cdot 17 \ \mbox{V} \ \mbox{है, तो } E_{\mbox{$\dot{e}$}} \ \ \mbox{an ultaser ahlove } \mbox{log } 10 = 1) \end{array}$

## अथवा

- (ख) (i) कोलराउश नियम बताइए। इसके कोई दो अनुप्रयोग दीजिए।
  - (ii)  $\wedge_{\mathrm{m}}^{\circ} \mathrm{NH_4Cl}, \wedge_{\mathrm{m}}^{\circ} \mathrm{NaOH}$  और  $\wedge_{\mathrm{m}}^{\circ} \mathrm{NaCl}$  क्रमश: 129·8, 217·4 और  $108\cdot9~\mathrm{S}~\mathrm{cm}^2~\mathrm{mol}^{-1}~$  हैं ।  $1\times10^{-2}~\mathrm{M}, \mathrm{NH_4OH}$  विलयन की मोलर चालकता  $9\cdot33~\mathrm{S}~\mathrm{cm}^2~\mathrm{mol}^{-1}$  है । इस सांद्रता पर  $\mathrm{NH_4OH}$  विलयन की वियोजन मात्रा ( $\alpha$ ) परिकलित कीजिए।



- (b) (i) While studying the periodic properties, Arti came across an abnormal behaviour in the atomic size of Hf. She found that, even though Hf is placed below Zr in the same group, both have almost similar atomic sizes.
  - (I)Which phenomenon is responsible for the above behaviour? Define it.
  - Mention any other consequence of the phenomenon.

(ii) Give reasons for the following:

3

- (I)Transition metals exhibit catalytic properties.
- (II)Transition metals have high enthalpy of atomisation.
- (III)Sc is a transition element, while Zn is not.
- 32. (i) (a) For a galvanic cell, the following half reactions are given. Decide, which will remain as reduction reaction and which will be reversed to become an oxidation reaction. Give reason for your answer.

 $Cr^{3+} + 3e^{-} \rightarrow Cr(s); E^{\circ} = -0.74 \text{ V}$ (I)

- $Fe^{2+} + 2e^{-} \rightarrow Fe(s); E^{\circ} = -0.44 \text{ V}$ (II)
- (ii) Represent the cell in which the following reaction takes

 $Mg(s) + 2Ag^{+}(0.001 M) \rightarrow Mg^{2+}(0.100 M) + 2Ag(s)$ Calculate  $E_{cell}$  if  $E_{cell}^{\circ} = 3.17 \text{ V.}$  (log 10 = 1)

OR

- (b) (i) State Kohlrausch's law. Give any two applications of it.
  - $\wedge_{m}^{\circ} NH_{4}Cl$ ,  $\wedge_{m}^{\circ} NaOH$  and  $\wedge_{m}^{\circ} NaCl$  are 129.8, 217.4, (ii) and 108.9 S cm<sup>2</sup> mol<sup>-1</sup> respectively. Molar conductivity of  $1 \times 10^{-2}$  M solution of NH<sub>4</sub>OH is 9.33 S cm<sup>2</sup> mol<sup>-1</sup>. Calculate the degree of dissociation (a) of NH<sub>4</sub>OH solution at this concentration.

2

2

3

2

- **33.** (क) (i) रसायन विज्ञान की प्रायोगिक कक्षा में, शिक्षक ने अपने छात्रों को  $C_2H_7N$  आण्विक सूत्र वाला कोई ऐमीन 'X' दिया और छात्रों से कहा कि इस ऐमीन के प्रकार को पहचानिए। छात्रों में से एक छात्रा, नीता ने प्रेक्षित किया कि यह  $C_6H_5SO_2Cl$  के साथ अभिक्रिया करके एक यौगिक देता है जो NaOH विलयन में घुल जाता है। क्या आप नीता की इस यौगिक 'X' को पहचानने में सहायता कर सकते हैं ?
  - (ii) निम्नलिखित को उनकी जलीय प्रावस्था में  $pK_b$  मान के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

 $C_6H_5NH_2$ ,  $(CH_3)_2NH$ ,  $NH_3$ ,  $CH_3NH_2$ ,  $(CH_3)_3N$ 

1

1

1

- (iii) ऐनिलीन नाइट्रोकरण द्वारा ऑर्थो और पैरा उत्पादों के साथ-साथ यथेष्ट मात्रा में मेटा उत्पाद भी देती है। क्यों ?
- (iv) ऐनिलीन का रूपान्तरण कीजिए:
  - (I) p-ब्रोमोऐनिलीन में
  - (II) फ़ीनॉल में

#### अथवा

- (ख) (i) अरुण ने एथिलऐमीन और  $\mathrm{CHCl}_3$  के मिश्रण को एथेनॉलिक  $\mathrm{KOH}$  के साथ गर्म किया, जिससे एक दुर्गन्धयुक्त गैस बनी। सम्मिलित रासायनिक समीकरण लिखिए।
  - (ii) निम्नलिखित अभिक्रियाओं में A और B को पहचानिए :

$$\begin{array}{c} A \xrightarrow{H_2/\operatorname{Pd}} & & & \\ \hline \text{एथेनॉल} & & & & \\ \end{array}$$

- (iii) ऐनिलीन का निम्नलिखित में रूपान्तरण कीजिए :
  - (I) बेन्ज़ीन
  - (II) सल्फैनिलिक अम्ल



- 33. (a) (i) In a chemistry practical class, the teacher gave his students an amine 'X' having molecular formula  $C_2H_7N$ , and asked the students to identify the type of amine. One of the students, Neeta, observed that it reacts with  $C_6H_5SO_2Cl$ , to give a compound which dissolves in NaOH solution. Can you help Neeta to identify the compound 'X'?
  - (ii) Arrange the following in the increasing order of their  $pK_b$  value in aqueous phase:

1

1

1

2

1

2

2

 ${\rm C_6H_5NH_2,\ (CH_3)_2NH,\ NH_3,\ CH_3NH_2,\ (CH_3)_3N}$ 

- (iii) Aniline on nitration gives considerable amount of meta product along with ortho and para products. Why?
- (iv) Convert aniline to:
  - (I) p-bromoaniline
  - (II) phenol

OR

- (b) (i) Arun heated a mixture of ethylamine and CHCl<sub>3</sub> with ethanolic KOH, which forms a foul smelling gas. Write the chemical equation involved.
  - (ii) Identify A and B in the following reactions:

$$A \xrightarrow{H_2/Pd} \bigoplus_{\text{ethanol}} Br_2/NaOH$$

- (iii) Convert aniline to:
  - (I) benzene
  - (II) sulphanilic acid